BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1066 related articles for article (PubMed ID: 28258692)

  • 21. The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment.
    Pennock GK; Chow LQ
    Oncologist; 2015 Jul; 20(7):812-22. PubMed ID: 26069281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Progesterone receptor impairs immune respond and down-regulates sensitivity to anti-LAG3 in breast cancer.
    Xiao Y; Zheng P; Xu W; Wu Z; Zhang X; Wang R; Huang T; Ming J
    Transl Res; 2024 Sep; 271():68-78. PubMed ID: 38795691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
    Peggs KS; Quezada SA; Allison JP
    Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer.
    Kline J; Gajewski TF
    Curr Opin Investig Drugs; 2010 Dec; 11(12):1354-9. PubMed ID: 21154117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma.
    Fröhlich A; Sirokay J; Fietz S; Vogt TJ; Dietrich J; Zarbl R; Florin M; Kuster P; Saavedra G; Valladolid SR; Hoffmann F; Flatz L; Ring SS; Golletz C; Pietsch T; Strieth S; Brossart P; Gielen GH; Kristiansen G; Bootz F; Landsberg J; Dietrich D
    EBioMedicine; 2020 Sep; 59():102962. PubMed ID: 32861198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy.
    Du H; Yi Z; Wang L; Li Z; Niu B; Ren G
    Int Immunopharmacol; 2020 Jan; 78():106113. PubMed ID: 31841754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systemic Immune Dysfunction in Cancer Patients Driven by IL6 Induction of LAG3 in Peripheral CD8+ T Cells.
    Somasundaram A; Cillo AR; Lampenfeld C; Workman CJ; Kunning S; Oliveri L; Velez M; Joyce S; Calderon M; Dadey R; Rajasundaram D; Normolle DP; Watkins SC; Herman JG; Kirkwood JM; Lipson EJ; Ferris RL; Bruno TC; Vignali DAA
    Cancer Immunol Res; 2022 Jul; 10(7):885-899. PubMed ID: 35587532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shed it, and help-LAG3 cleavage drives conventional CD4
    Seidel L; Bengsch B
    Sci Immunol; 2020 Jul; 5(49):. PubMed ID: 32680953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the checkpoint blockade in lung cancer immunotherapy.
    Dal Bello MG; Alama A; Coco S; Vanni I; Grossi F
    Drug Discov Today; 2017 Aug; 22(8):1266-1273. PubMed ID: 28600190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of non-small cell lung cancer microenvironment indicates preponderance of T cell exhaustion marker expression.
    Zhou H; Liu T; Wang Z
    Exp Cell Res; 2017 Nov; 360(2):205-209. PubMed ID: 28890294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel LAG3 neutralizing antibody improves cancer immunotherapy by dual inhibition of MHC-II and FGL1 ligand binding.
    Zuo D; Zhu Y; Wang K; Qin Y; Su Y; Lan S; Li Y; Dong S; Liang Y; Feng M
    Biomed Pharmacother; 2024 Jun; 175():116782. PubMed ID: 38776682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia.
    Wierz M; Pierson S; Guyonnet L; Viry E; Lequeux A; Oudin A; Niclou SP; Ollert M; Berchem G; Janji B; Guérin C; Paggetti J; Moussay E
    Blood; 2018 Apr; 131(14):1617-1621. PubMed ID: 29439955
    [No Abstract]   [Full Text] [Related]  

  • 34. STING signaling: a key to therapeutic tumor immunity.
    Foote JB; Emens LA
    Immunotherapy; 2018 Jul; 10(9):729-731. PubMed ID: 30008260
    [No Abstract]   [Full Text] [Related]  

  • 35. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations.
    Jiang Y; Chen M; Nie H; Yuan Y
    Hum Vaccin Immunother; 2019; 15(5):1111-1122. PubMed ID: 30888929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interleukin-35 Limits Anti-Tumor Immunity.
    Turnis ME; Sawant DV; Szymczak-Workman AL; Andrews LP; Delgoffe GM; Yano H; Beres AJ; Vogel P; Workman CJ; Vignali DA
    Immunity; 2016 Feb; 44(2):316-29. PubMed ID: 26872697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epitope Mapping of Therapeutic Antibodies Targeting Human LAG3.
    Agnihotri P; Mishra AK; Agarwal P; Vignali KM; Workman CJ; Vignali DAA; Mariuzza RA
    J Immunol; 2022 Oct; 209(8):1586-1594. PubMed ID: 36104110
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Klümper N; Ralser DJ; Bawden EG; Landsberg J; Zarbl R; Kristiansen G; Toma M; Ritter M; Hölzel M; Ellinger J; Dietrich D
    J Immunother Cancer; 2020 Mar; 8(1):. PubMed ID: 32234847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different Expression Characteristics of LAG3 and PD-1 in Sepsis and Their Synergistic Effect on T Cell Exhaustion: A New Strategy for Immune Checkpoint Blockade.
    Niu B; Zhou F; Su Y; Wang L; Xu Y; Yi Z; Wu Y; Du H; Ren G
    Front Immunol; 2019; 10():1888. PubMed ID: 31440257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.