BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

958 related articles for article (PubMed ID: 28258699)

  • 1. New checkpoints in cancer immunotherapy.
    Ni L; Dong C
    Immunol Rev; 2017 Mar; 276(1):52-65. PubMed ID: 28258699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coinhibitory Pathways in Immunotherapy for Cancer.
    Baumeister SH; Freeman GJ; Dranoff G; Sharpe AH
    Annu Rev Immunol; 2016 May; 34():539-73. PubMed ID: 26927206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3.
    Janakiram M; Shah UA; Liu W; Zhao A; Schoenberg MP; Zang X
    Immunol Rev; 2017 Mar; 276(1):26-39. PubMed ID: 28258693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy.
    Dougall WC; Kurtulus S; Smyth MJ; Anderson AC
    Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B7 family checkpoint regulators in immune regulation and disease.
    Ceeraz S; Nowak EC; Noelle RJ
    Trends Immunol; 2013 Nov; 34(11):556-63. PubMed ID: 23954143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basics of PD-1 in self-tolerance, infection, and cancer immunity.
    Chikuma S
    Int J Clin Oncol; 2016 Jun; 21(3):448-55. PubMed ID: 26864303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy.
    Picarda E; Ohaegbulam KC; Zang X
    Clin Cancer Res; 2016 Jul; 22(14):3425-3431. PubMed ID: 27208063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. B7S1, a novel candidate for anti-tumor checkpoint blockade immunotherapy.
    Chen X; Ye L
    Sci China Life Sci; 2018 Sep; 61(9):1132-1134. PubMed ID: 30069671
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma.
    Kondo Y; Ohno T; Nishii N; Harada K; Yagita H; Azuma M
    Oral Oncol; 2016 Jun; 57():54-60. PubMed ID: 27208845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FcγR-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in Cancer Immunotherapy.
    Chen X; Song X; Li K; Zhang T
    Front Immunol; 2019; 10():292. PubMed ID: 30863404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential targeting of B7-H4 for the treatment of cancer.
    Podojil JR; Miller SD
    Immunol Rev; 2017 Mar; 276(1):40-51. PubMed ID: 28258701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting T Cell Co-receptors for Cancer Therapy.
    Callahan MK; Postow MA; Wolchok JD
    Immunity; 2016 May; 44(5):1069-78. PubMed ID: 27192570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New B7 Family Checkpoints in Human Cancers.
    Ni L; Dong C
    Mol Cancer Ther; 2017 Jul; 16(7):1203-1211. PubMed ID: 28679835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
    Peggs KS; Quezada SA; Allison JP
    Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Immune-checkpoints: the new anti-cancer immunotherapies].
    Ileana E; Champiat S; Soria JC
    Bull Cancer; 2013 Jun; 100(6):601-10. PubMed ID: 23735730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma.
    Wang SD; Li HY; Li BH; Xie T; Zhu T; Sun LL; Ren HY; Ye ZM
    Int Immunopharmacol; 2016 Sep; 38():81-9. PubMed ID: 27258185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neoantigen heterogeneity: a key driver of immune response and sensitivity to immune checkpoint blockade?
    Furness AJ; Quezada SA; Peggs KS
    Immunotherapy; 2016 Jun; 8(7):763-6. PubMed ID: 27349975
    [No Abstract]   [Full Text] [Related]  

  • 20. Rationally combining immunotherapies to improve efficacy of immune checkpoint blockade in solid tumors.
    Dammeijer F; Lau SP; van Eijck CHJ; van der Burg SH; Aerts JGJV
    Cytokine Growth Factor Rev; 2017 Aug; 36():5-15. PubMed ID: 28693973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.