BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 28259064)

  • 1. NIR spectroscopy-CNN-enabled chemometrics for multianalyte monitoring in microbial fermentation.
    Banerjee S; Mandal S; Jesubalan NG; Jain R; Rathore AS
    Biotechnol Bioeng; 2024 Jun; 121(6):1803-1819. PubMed ID: 38390805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a PAT platform for the prediction of granule tableting properties.
    Casian T; Nagy B; Lazurca C; Marcu V; Tőkés EO; Kelemen ÉK; Zöldi K; Oprean R; Nagy ZK; Tomuta I; Kovács B
    Int J Pharm; 2023 Dec; 648():123610. PubMed ID: 37977288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Textural Properties of Cooked Germinated Brown Rice Using the near-Infrared Spectra of Whole Grain.
    Kaewsorn K; Phanomsophon T; Maichoon P; Pokhrel DR; Pornchaloempong P; Krusong W; Sirisomboon P; Tanaka M; Kojima T
    Foods; 2023 Dec; 12(24):. PubMed ID: 38137320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migrating from partial least squares discriminant analysis to artificial neural networks: a comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks.
    Mendez KM; Broadhurst DI; Reinke SN
    Metabolomics; 2020 Jan; 16(2):17. PubMed ID: 31965332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near infrared spectroscopy coupled with radial basis function neural network for at-line monitoring of Lactococcus lactis subsp. fermentation.
    Liu Y; Lu C; Meng Q; Lu J; Fu Y; Liu B; Zhou Y; Guo W; Teng L
    Saudi J Biol Sci; 2016 Jan; 23(1):S106-12. PubMed ID: 26858554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network enhanced aging time measurements of diary product remaining with infrared spectroscopy.
    Beck T; Gatternig B; Delgado A
    Heliyon; 2023 Nov; 9(11):e22039. PubMed ID: 38034674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-linear partial least squares based on monotonic inner relation.
    Zheng X; Nie B; Du J; Rao Y; Li H; Chen J; Du Y; Zhang Y; Jin H
    Front Physiol; 2024; 15():1369165. PubMed ID: 38751986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Glucose Measurement from NIR and MIR Spectroscopy: Comprehensive Benchmark of Machine Learning and Filtering Chemometrics.
    Khadem H; Nemat H; Elliott J; Benaissa M
    Heliyon; 2024 May; 10(10):e30981. PubMed ID: 38778952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus.
    Sacks DB; Arnold M; Bakris GL; Bruns DE; Horvath AR; Lernmark Å; Metzger BE; Nathan DM; Kirkman MS
    Diabetes Care; 2023 Oct; 46(10):e151-e199. PubMed ID: 37471273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid determination of triglyceride and glucose levels in
    Huang J; Wang P; Wu Y; Zeng L; Ji X; Zhang X; Wu M; Tong H; Yang Y
    Heliyon; 2023 Jun; 9(6):e17389. PubMed ID: 37426790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive Blood Glucose Monitoring Systems Using Near-Infrared Technology-A Review.
    Hina A; Saadeh W
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in cost-effective integrated spectrometers.
    Li A; Yao C; Xia J; Wang H; Cheng Q; Penty R; Fainman Y; Pan S
    Light Sci Appl; 2022 Jun; 11(1):174. PubMed ID: 35672298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of FTIR Spectroscopy for Quantitative Analysis of Blood Serum: A Preliminary Study.
    Bel'skaya LV; Sarf EA; Solomatin DV
    Diagnostics (Basel); 2021 Dec; 11(12):. PubMed ID: 34943626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Invasive Blood Glucose Monitoring Technology: A Review.
    Tang L; Chang SJ; Chen CJ; Liu JT
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Spectroscopy in Bio-Applications.
    Beć KB; Grabska J; Huck CW
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32604876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous noninvasive glucose monitoring; water as a relevant marker of glucose uptake in vivo.
    Caduff A; Ben Ishai P; Feldman Y
    Biophys Rev; 2019 Dec; 11(6):1017-1035. PubMed ID: 31741172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Noninvasive Accurate Measurement of Blood Glucose Levels with Raman Spectroscopy of Blood in Microvessels.
    Li N; Zang H; Sun H; Jiao X; Wang K; Liu TC; Meng Y
    Molecules; 2019 Apr; 24(8):. PubMed ID: 30999565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Electromagnetic Wave Sensing of Glucose.
    Zhang R; Liu S; Jin H; Luo Y; Zheng Z; Gao F; Zheng Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy.
    Jintao X; Liming Y; Yufei L; Chunyan L; Han C
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():250-254. PubMed ID: 28259064
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.