These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28259074)

  • 1. A GR/Impedance probe proves unsuitable for measuring GR depth in Australian lamb carcases.
    Fowler SM; Hoban JM; van de Ven R; Boyce M; Williams A; Pethick DW; Hopkins DL
    Meat Sci; 2017 Jul; 129():71-73. PubMed ID: 28259074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a probe to measure fat depth of lamb carcases.
    Fowler SM; Morris S; Hopkins DL
    Meat Sci; 2020 Jan; 159():107937. PubMed ID: 31494520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of lamb carcase weight and GR depth on the production of value-added cuts - A short communication.
    Fowler SM; Hoban JM; van de Ven R; Gardner G; Pethick DW; Hopkins DL
    Meat Sci; 2017 Sep; 131():139-141. PubMed ID: 28514708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Hennessy Grading Probe for use in lamb carcases.
    Hopkins DL; Toohey ES; Boyce M; van de Ven RJ
    Meat Sci; 2013 Mar; 93(3):752-6. PubMed ID: 23261535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved cut weight predictions from DEXA scans of lamb carcasses enables more accurate allocation of cuts to processing plans.
    Calnan HB; Williams A; Alston-Knox C; Wang G; Pitchford WS; Gardner GE
    Meat Sci; 2024 Oct; 216():109556. PubMed ID: 38852286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the composition of lamb carcases using alternative fat and muscle depth measures.
    Hopkins DL; Ponnampalam EN; Warner RD
    Meat Sci; 2008 Apr; 78(4):400-5. PubMed ID: 22062458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using dual energy X-ray absorptiometry to estimate commercial cut weights at abattoir chain-speed.
    Gardner GE; Anderson F; Smith C; Williams A
    Meat Sci; 2021 Mar; 173():108400. PubMed ID: 33316705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary investigation for the prediction of intramuscular fat content of lamb in-situ using a hand- held NIR spectroscopic device.
    Fowler SM; Morris S; Hopkins DL
    Meat Sci; 2020 Aug; 166():108153. PubMed ID: 32330832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capturing lean distribution in lamb carcases is of more value to the processor than the breeder.
    Walkom SF; Gardner GE; Anderson F; Williams A; Brown DJ
    Meat Sci; 2021 Nov; 181():108524. PubMed ID: 33896686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of an on-line dual energy X-ray absorptiometer for estimating carcase composition in lamb at abattoir chain-speed.
    Gardner GE; Starling S; Charnley J; Hocking-Edwards J; Peterse J; Williams A
    Meat Sci; 2018 Oct; 144():91-99. PubMed ID: 30008338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrawide band microwave system as a non-invasive technology to predict beef carcase fat depth.
    Marimuthu J; Loudon KMW; Gardner GE
    Meat Sci; 2021 Sep; 179():108455. PubMed ID: 33558090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of lamb carcase C-site fat depth and GR tissue depth using a non-invasive portable microwave system versus body condition scoring.
    Marimuthu J; Loudon KMW; Gardner GE
    Meat Sci; 2022 Jun; 188():108764. PubMed ID: 35220057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of the Australian beef carcase appraisal system.
    Johnson ER; Charles DD
    Aust Vet J; 1976 Apr; 52(4):149-54. PubMed ID: 938352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of lamb carcase C-site fat depth and GR tissue depth using a non-invasive portable microwave system.
    Marimuthu J; Loudon KMW; Gardner GE
    Meat Sci; 2021 Nov; 181():108398. PubMed ID: 33451872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of electronic probes for classifying lamb carcasses.
    Kirton AH; Mercer GJ; Duganzich DM; Uljee AE
    Meat Sci; 1995; 39(2):167-76. PubMed ID: 22059823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial least squares and machine learning for the prediction of intramuscular fat content of lamb loin.
    Fowler SM; Wheeler D; Morris S; Mortimer SI; Hopkins DL
    Meat Sci; 2021 Jul; 177():108505. PubMed ID: 33773186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection for intramuscular fat and lean meat yield will improve the bloomed colour of Australian lamb loin meat.
    Calnan HB; Jacob RH; Pethick DW; Gardner GE
    Meat Sci; 2017 Sep; 131():187-195. PubMed ID: 28550815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting lamb carcase composition from tissue depth measured at a single point with an ultrawide-band microwave scanner.
    Marimuthu J; Loudon KMW; Karayakallile Abraham R; Pamarla V; Gardner GE
    Meat Sci; 2024 Jul; 213():109509. PubMed ID: 38642510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic correction of dual-energy x-ray absorptiometry images improves chain speed prediction of lamb composition in abattoirs.
    Connaughton SL; Williams A; Anderson F; Kelman KR; Gardner GE
    Animal; 2024 Jun; 18(6):101171. PubMed ID: 38843667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling lamb carcase pH and temperature decline parameters: relationship to shear force and abattoir variation.
    Hopkins DL; Holman BW; van de Ven RJ
    Meat Sci; 2015 Feb; 100():85-90. PubMed ID: 25460110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.