These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2825928)

  • 1. Biochemical and electrophysiological studies of the psychotropic compound, amperozide.
    Haskins JT; Muth EA; Andree TH
    Brain Res Bull; 1987 Oct; 19(4):465-71. PubMed ID: 2825928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the novel antipsychotic drug amperozide and its metabolite FG5620 with central nervous system receptors and monoamine uptake sites: relation to behavioral and clinical effects.
    Svartengren J; Pettersson E; Björk A
    Biol Psychiatry; 1997 Aug; 42(4):247-59. PubMed ID: 9270901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotonergic regulation of noradrenergic coerulean neurons: electrophysiological evidence for the involvement of 5-HT2 receptors.
    Gorea E; Adrien J
    Eur J Pharmacol; 1988 Sep; 154(3):285-91. PubMed ID: 3234483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor binding properties of amperozide.
    Svartengren J; Simonsson P
    Pharmacol Toxicol; 1990; 66 Suppl 1():8-11. PubMed ID: 2154737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The putatively antipsychotic agent amperozide produces behavioural stimulation in the rat. A behavioural and biochemical characterization.
    Waters N; Pettersson G; Carlsson A; Svensson K
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Aug; 340(2):161-9. PubMed ID: 2572972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of amperozide on the synthesis and turnover of monoamines in rat brain.
    Pettersson G; Johannessen K; Hulthe P; Engel JA
    Pharmacol Toxicol; 1990; 66 Suppl 1():40-4. PubMed ID: 2106131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of amperozide, a putative antipsychotic drug, on rat midbrain dopamine neurons recorded in vivo.
    Grenhoff J; Tung CS; Ugedo L; Svensson TH
    Pharmacol Toxicol; 1990; 66 Suppl 1():29-33. PubMed ID: 2304893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microinjected morphine suppresses the activity of locus coeruleus noradrenergic neurons in freely moving cats.
    Abercrombie ED; Levine ES; Jacobs BL
    Neurosci Lett; 1988 Apr; 86(3):334-9. PubMed ID: 3380325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of alpha 1-adrenoceptor-mediated collateral excitation in the regulation of the electrical activity of locus coeruleus neurons.
    Nakamura S; Sakaguchi T; Kimura F; Aoki F
    Neuroscience; 1988 Dec; 27(3):921-9. PubMed ID: 2855264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 5-hydroxytryptamine2 agonist augments gamma-aminobutyric acid and excitatory amino acid inputs to noradrenergic locus coeruleus neurons.
    Chiang C; Aston-Jones G
    Neuroscience; 1993 May; 54(2):409-20. PubMed ID: 8101639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concomitant depression of locus coeruleus neurons and of flexor reflexes by an alpha 2-adrenergic agonist in rats: a possible mechanism for an alpha 2-mediated muscle relaxation.
    Palmeri A; Wiesendanger M
    Neuroscience; 1990; 34(1):177-87. PubMed ID: 1970136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological effects of tianeptine on rat locus coeruleus, raphe dorsalis, and hippocampus activity.
    Dresse A; Scuvée-Moreau J
    Clin Neuropharmacol; 1988; 11 Suppl 2():S51-8. PubMed ID: 3180117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Correlative interconnections between impulse activity of aminergic neurons of the brainstem and spectral components of electroencephalogram during action of bemitil].
    Kolotilova OI; Pavlenko VB; Koreniuk II; Kulychenko OM; Fokina IuO
    Fiziol Zh (1994); 2007; 53(4):73-7. PubMed ID: 17902374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brexpiprazole Alters Monoaminergic Systems following Repeated Administration: an in Vivo Electrophysiological Study.
    Oosterhof CA; El Mansari M; Bundgaard C; Blier P
    Int J Neuropsychopharmacol; 2015 Oct; 19(3):pyv111. PubMed ID: 26428352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of adrenaline synthesis inhibition on brain noradrenaline neurons in locus coeruleus.
    Engberg G; Elam M; Svensson TH
    Brain Res; 1981 Oct; 223(1):49-58. PubMed ID: 7284809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The locus coeruleus: actions of psychoactive drugs.
    Olpe HR; Jones RS; Steinmann MW
    Experientia; 1983 Mar; 39(3):242-9. PubMed ID: 6825788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of agmatine on locus coeruleus neuron activity: possible involvement of nitric oxide.
    Ruiz-Durántez E; Ruiz-Ortega JA; Pineda J; Ugedo L
    Br J Pharmacol; 2002 Mar; 135(5):1152-8. PubMed ID: 11877321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute administration of the antidepressant trazodone increases noradrenergic locus coeruleus neuronal firing in rats.
    VanderMaelen CP; Braselton JP
    Arch Int Pharmacodyn Ther; 1990; 308():13-20. PubMed ID: 2099132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of amperozide on rat cortical 5-HT2 and striatal and limbic dopamine D2 receptor occupancy: implications for antipsychotic action.
    Meltzer HY; Zhang Y; Stockmeier CA
    Eur J Pharmacol; 1992 May; 216(1):67-71. PubMed ID: 1388121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of 5-HT1A receptors potentiates the clonidine inhibitory effect in the locus coeruleus.
    Ruiz-Ortega JA; Ugedo L
    Eur J Pharmacol; 1997 Aug; 333(2-3):159-62. PubMed ID: 9314029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.