These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28259384)

  • 41. Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa.
    Häussler S
    Environ Microbiol; 2004 Jun; 6(6):546-51. PubMed ID: 15142242
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multimetal resistance and tolerance in microbial biofilms.
    Harrison JJ; Ceri H; Turner RJ
    Nat Rev Microbiol; 2007 Dec; 5(12):928-38. PubMed ID: 17940533
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic switching enables efficient bacterial colonization in flow.
    Kannan A; Yang Z; Kim MK; Stone HA; Siryaporn A
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5438-5443. PubMed ID: 29735692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.
    Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C
    Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.
    Toyofuku M; Roschitzki B; Riedel K; Eberl L
    J Proteome Res; 2012 Oct; 11(10):4906-15. PubMed ID: 22909304
    [TBL] [Abstract][Full Text] [Related]  

  • 46.
    Hernandez-Sanabria E; Slomka V; Herrero ER; Kerckhof FM; Zaidel L; Teughels W; Boon N
    Front Cell Infect Microbiol; 2017; 7():235. PubMed ID: 28638806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Agriculturally important microbial biofilms: Present status and future prospects.
    Velmourougane K; Prasanna R; Saxena AK
    J Basic Microbiol; 2017 Jul; 57(7):548-573. PubMed ID: 28407275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa.
    Yang L; Liu Y; Markussen T; Høiby N; Tolker-Nielsen T; Molin S
    FEMS Immunol Med Microbiol; 2011 Aug; 62(3):339-47. PubMed ID: 21595754
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlling the Connections of Cells to the Biofilm Matrix.
    Parsek MR
    J Bacteriol; 2016 Jan; 198(1):12-4. PubMed ID: 26527642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antibiofilm Peptides: Potential as Broad-Spectrum Agents.
    Pletzer D; Hancock RE
    J Bacteriol; 2016 Oct; 198(19):2572-8. PubMed ID: 27068589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modelling production of extracellular polymeric substances in a Pseudomonas aeruginosa chemostat culture.
    Kommedal R; Bakke R; Dockery J; Stoodley P
    Water Sci Technol; 2001; 43(6):129-34. PubMed ID: 11381958
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.
    Smalyukh II; Butler J; Shrout JD; Parsek MR; Wong GC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):030701. PubMed ID: 18850984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple method for quantifying biomass cell and polymer distribution in biofilms.
    Zhang W; McLamore ES; Garland NT; Leon JV; Banks MK
    J Microbiol Methods; 2013 Sep; 94(3):367-74. PubMed ID: 23916866
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture.
    Gerbersdorf SU; Wieprecht S
    Geobiology; 2015 Jan; 13(1):68-97. PubMed ID: 25345370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Does Streptococcus mitis, a neonatal oropharyngeal bacterium, influence the pathogenicity of Pseudomonas aeruginosa?
    Song S; Du L; Yu J; Ai Q; Pan Y; Fu Y; Wang Z
    Microbes Infect; 2015 Oct; 17(10):710-6. PubMed ID: 26277756
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Application of bacterial tracking techniques in biofilms].
    Zhang W; Zhang J; Zhao K
    Sheng Wu Gong Cheng Xue Bao; 2017 Sep; 33(9):1411-1432. PubMed ID: 28956392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms.
    Allesen-Holm M; Barken KB; Yang L; Klausen M; Webb JS; Kjelleberg S; Molin S; Givskov M; Tolker-Nielsen T
    Mol Microbiol; 2006 Feb; 59(4):1114-28. PubMed ID: 16430688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthetic analogs of rhamnolipids modulate structured biofilms formed by rhamnolipid-nonproducing mutant of Pseudomonas aeruginosa.
    Zheng H; Singh N; Shetye GS; Jin Y; Li D; Luk YY
    Bioorg Med Chem; 2017 Mar; 25(6):1830-1838. PubMed ID: 28236509
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of bacterial biofilms in chronic infections.
    Bjarnsholt T
    APMIS Suppl; 2013 May; (136):1-51. PubMed ID: 23635385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems.
    Evans CR; Kempes CP; Price-Whelan A; Dietrich LEP
    Trends Microbiol; 2020 Sep; 28(9):732-743. PubMed ID: 32781027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.