These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 28259465)
1. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study. De Groote F; Allen JL; Ting LH J Biomech; 2017 Apr; 55():71-77. PubMed ID: 28259465 [TBL] [Abstract][Full Text] [Related]
2. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: A simulation study. Versteeg CS; Ting LH; Allen JL J Biomech; 2016 Oct; 49(14):3230-3237. PubMed ID: 27543251 [TBL] [Abstract][Full Text] [Related]
3. The influence of artificially increased hip and trunk stiffness on balance control in man. Grüneberg C; Bloem BR; Honegger F; Allum JH Exp Brain Res; 2004 Aug; 157(4):472-85. PubMed ID: 15138751 [TBL] [Abstract][Full Text] [Related]
4. Ankle and hip postural strategies defined by joint torques. Runge CF; Shupert CL; Horak FB; Zajac FE Gait Posture; 1999 Oct; 10(2):161-70. PubMed ID: 10502650 [TBL] [Abstract][Full Text] [Related]
5. Sway-dependent changes in standing ankle stiffness caused by muscle thixotropy. Sakanaka TE; Lakie M; Reynolds RF J Physiol; 2016 Feb; 594(3):781-93. PubMed ID: 26607292 [TBL] [Abstract][Full Text] [Related]
6. Center of mass states render multi-joint torques throughout standing balance recovery. Jakubowski KL; Martino G; Beck ON; Sawicki GS; Ting LH bioRxiv; 2024 Aug; ():. PubMed ID: 39229207 [TBL] [Abstract][Full Text] [Related]
7. A postural model of balance-correcting movement strategies. Allum JH; Honegger F J Vestib Res; 1992; 2(4):323-47. PubMed ID: 1342406 [TBL] [Abstract][Full Text] [Related]
8. Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms. Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H Brain Res Bull; 2005 Sep; 67(1-2):30-9. PubMed ID: 16140160 [TBL] [Abstract][Full Text] [Related]
9. Ankle intrinsic stiffness changes with postural sway. Amiri P; Kearney RE J Biomech; 2019 Mar; 85():50-58. PubMed ID: 30655078 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal separation of roll and pitch balance-correcting commands in humans. Grüneberg C; Duysens J; Honegger F; Allum JH J Neurophysiol; 2005 Nov; 94(5):3143-58. PubMed ID: 16033938 [TBL] [Abstract][Full Text] [Related]
11. Interaction between muscle tone, short-range stiffness and increased sensory feedback gains explains key kinematic features of the pendulum test in spastic cerebral palsy: A simulation study. De Groote F; Blum KP; Horslen BC; Ting LH PLoS One; 2018; 13(10):e0205763. PubMed ID: 30335860 [TBL] [Abstract][Full Text] [Related]
12. Initial balance in human standing postures: Roles of the joint mechanisms. Ashtiani MN; Azghani MR; Parnianpour M Proc Inst Mech Eng H; 2018 Dec; 232(12):1255-1260. PubMed ID: 30458669 [TBL] [Abstract][Full Text] [Related]
13. An intermittent control model of flexible human gait using a stable manifold of saddle-type unstable limit cycle dynamics. Fu C; Suzuki Y; Kiyono K; Morasso P; Nomura T J R Soc Interface; 2014 Dec; 11(101):20140958. PubMed ID: 25339687 [TBL] [Abstract][Full Text] [Related]
14. Coordination of muscle torques stabilizes upright standing posture: an UCM analysis. Park E; Reimann H; Schöner G Exp Brain Res; 2016 Jun; 234(6):1757-67. PubMed ID: 26879770 [TBL] [Abstract][Full Text] [Related]
15. Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks. Crevecoeur F; Kurtzer I; Scott SH J Neurophysiol; 2012 May; 107(10):2821-32. PubMed ID: 22357792 [TBL] [Abstract][Full Text] [Related]
16. Uncertainty of knee joint muscle activity during knee joint torque exertion: the significance of controlling adjacent joint torque. Nozaki D; Nakazawa K; Akai M J Appl Physiol (1985); 2005 Sep; 99(3):1093-103. PubMed ID: 15860683 [TBL] [Abstract][Full Text] [Related]
17. Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human. Kirsch RF; Rymer WZ J Neurophysiol; 1992 Aug; 68(2):449-70. PubMed ID: 1527569 [TBL] [Abstract][Full Text] [Related]
18. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087 [TBL] [Abstract][Full Text] [Related]
19. Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly. Afschrift M; De Groote F; Verschueren S; Jonkers I Gait Posture; 2018 Jan; 59():122-127. PubMed ID: 29031136 [TBL] [Abstract][Full Text] [Related]
20. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]