These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 28259469)
1. Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. Salam JA; Hatha MAA; Das N J Environ Manage; 2017 May; 193():394-399. PubMed ID: 28259469 [TBL] [Abstract][Full Text] [Related]
2. Influence of the application of sugarcane bagasse on lindane (gamma-HCH) mobility through soil column: implication for biotreatment. Abhilash PC; Singh N Bioresour Technol; 2008 Dec; 99(18):8961-6. PubMed ID: 18562197 [TBL] [Abstract][Full Text] [Related]
3. Coupling of bioaugmentation and biostimulation to improve lindane removal from different soil types. Raimondo EE; Saez JM; Aparicio JD; Fuentes MS; Benimeli CS Chemosphere; 2020 Jan; 238():124512. PubMed ID: 31430718 [TBL] [Abstract][Full Text] [Related]
4. Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. Salam JA; Das N World J Microbiol Biotechnol; 2014 Apr; 30(4):1301-13. PubMed ID: 24217897 [TBL] [Abstract][Full Text] [Related]
5. Enhanced bioremediation of lindane-contaminated soils through microbial bioaugmentation assisted by biostimulation with sugarcane filter cake. Raimondo EE; Aparicio JD; Bigliardo AL; Fuentes MS; Benimeli CS Ecotoxicol Environ Saf; 2020 Mar; 190():110143. PubMed ID: 31918254 [TBL] [Abstract][Full Text] [Related]
6. Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments. Zhang X; Zhu Y; Zhang Y; Liu Y; Liu S; Guo J; Li R; Wu S; Chen B J Environ Sci (China); 2014 May; 26(5):1080-9. PubMed ID: 25079638 [TBL] [Abstract][Full Text] [Related]
7. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Liu J; Chen S; Ding J; Xiao Y; Han H; Zhong G Appl Microbiol Biotechnol; 2015 Dec; 99(24):10839-51. PubMed ID: 26337896 [TBL] [Abstract][Full Text] [Related]
8. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment. Salam JA; Das N Appl Microbiol Biotechnol; 2015 Mar; 99(5):2351-60. PubMed ID: 25304880 [TBL] [Abstract][Full Text] [Related]
9. Lindane dissipation in a biomixture: Effect of soil properties and bioaugmentation. Saez JM; Bigliardo AL; Raimondo EE; Briceño GE; Polti MA; Benimeli CS Ecotoxicol Environ Saf; 2018 Jul; 156():97-105. PubMed ID: 29533212 [TBL] [Abstract][Full Text] [Related]
10. Effects of sugarcane waste-products on Cd and Zn fractionation and their uptake by sugarcane (Saccharum officinarum L.). Akkajit P; DeSutter T; Tongcumpou C Environ Sci Process Impacts; 2014 Jan; 16(1):88-93. PubMed ID: 24217524 [TBL] [Abstract][Full Text] [Related]
11. Short-term effects of sugarcane waste products from ethanol production plant as soil amendments on sugarcane growth and metal stabilization. Akkajit P; DeSutter T; Tongcumpou C Environ Sci Process Impacts; 2013 May; 15(5):947-54. PubMed ID: 23511210 [TBL] [Abstract][Full Text] [Related]
12. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. Benimeli CS; González AJ; Chaile AP; Amoroso MJ J Basic Microbiol; 2007 Dec; 47(6):468-73. PubMed ID: 18072247 [TBL] [Abstract][Full Text] [Related]
13. Slow-release inoculation allows sustained biodegradation of gamma-hexachlorocyclohexane. Mertens B; Boon N; Verstraete W Appl Environ Microbiol; 2006 Jan; 72(1):622-7. PubMed ID: 16391099 [TBL] [Abstract][Full Text] [Related]
14. Cr(VI) and lindane removal by Streptomyces M7 is improved by maize root exudates. Simon Sola MZ; Pérez Visñuk D; Benimeli CS; Polti MA; Alvarez A J Basic Microbiol; 2017 Dec; 57(12):1037-1044. PubMed ID: 28940512 [TBL] [Abstract][Full Text] [Related]
15. Lindane removal in contaminated soil by defined microbial consortia and evaluation of its effectiveness by bioassays and cytotoxicity studies. Sahoo B; Chaudhuri S Int Microbiol; 2022 May; 25(2):365-378. PubMed ID: 35032229 [TBL] [Abstract][Full Text] [Related]
16. Gentle remediation options for soil with mixed chromium (VI) and lindane pollution: biostimulation, bioaugmentation, phytoremediation and vermiremediation. Lacalle RG; Aparicio JD; Artetxe U; Urionabarrenetxea E; Polti MA; Soto M; Garbisu C; Becerril JM Heliyon; 2020 Aug; 6(8):e04550. PubMed ID: 32885063 [TBL] [Abstract][Full Text] [Related]
17. Ex situ and in situ biodegradation of lindane by Azotobacter chroococcum. Anupama KS; Paul S J Environ Sci Health B; 2010 Jan; 45(1):58-66. PubMed ID: 20390932 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments. Sadañoski MA; Tatarin AS; Barchuk ML; Gonzalez M; Pegoraro CN; Fonseca MI; Levin LN; Villalba LL Ecotoxicol Environ Saf; 2020 Oct; 202():110929. PubMed ID: 32800215 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Becerra-Castro C; Kidd PS; Rodríguez-Garrido B; Monterroso C; Santos-Ucha P; Prieto-Fernández A Environ Pollut; 2013 Jul; 178():202-10. PubMed ID: 23583940 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction and dissipation of lindane by Spinacia oleracea L. Dubey RK; Tripathi V; Singh N; Abhilash PC Ecotoxicol Environ Saf; 2014 Nov; 109():22-6. PubMed ID: 25133347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]