BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28259628)

  • 1. Architecture of the Flagellar Switch Complex of Escherichia coli: Conformational Plasticity of FliG and Implications for Adaptive Remodeling.
    Kim EA; Panushka J; Meyer T; Carlisle R; Baker S; Ide N; Lynch M; Crane BR; Blair DF
    J Mol Biol; 2017 May; 429(9):1305-1320. PubMed ID: 28259628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogenesis of the Flagellar Switch Complex in Escherichia coli: Formation of Sub-Complexes Independently of the Basal-Body MS-Ring.
    Kim EA; Panushka J; Meyer T; Ide N; Carlisle R; Baker S; Blair DF
    J Mol Biol; 2017 Jul; 429(15):2353-2359. PubMed ID: 28625846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.
    Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex.
    Brown PN; Terrazas M; Paul K; Blair DF
    J Bacteriol; 2007 Jan; 189(2):305-12. PubMed ID: 17085573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of the Flagellar Switch Complex of Bacillus subtilis.
    Ward E; Kim EA; Panushka J; Botelho T; Meyer T; Kearns DB; Ordal G; Blair DF
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30455280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking.
    Lowder BJ; Duyvesteyn MD; Blair DF
    J Bacteriol; 2005 Aug; 187(16):5640-7. PubMed ID: 16077109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor.
    Kinoshita M; Furukawa Y; Uchiyama S; Imada K; Namba K; Minamino T
    Biochem Biophys Res Commun; 2018 Jan; 496(1):12-17. PubMed ID: 29294326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor.
    Van Way SM; Millas SG; Lee AH; Manson MD
    J Bacteriol; 2004 May; 186(10):3173-81. PubMed ID: 15126479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the FliF-FliG complex from
    Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN
    J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli.
    Paul K; Brunstetter D; Titen S; Blair DF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17171-6. PubMed ID: 21969567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching of bacterial flagellar motors [corrected] triggered by mutant FliG.
    Lele PP; Berg HC
    Biophys J; 2015 Mar; 108(5):1275-80. PubMed ID: 25762339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor.
    Lynch MJ; Levenson R; Kim EA; Sircar R; Blair DF; Dahlquist FW; Crane BR
    Structure; 2017 Feb; 25(2):317-328. PubMed ID: 28089452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Architecture of the flagellar rotor.
    Paul K; Gonzalez-Bonet G; Bilwes AM; Crane BR; Blair D
    EMBO J; 2011 Jun; 30(14):2962-71. PubMed ID: 21673656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis.
    Morehouse KA; Goodfellow IG; Sockett RE
    J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insight into the rotational switching mechanism of the bacterial flagellar motor.
    Minamino T; Imada K; Kinoshita M; Nakamura S; Morimoto YV; Namba K
    PLoS Biol; 2011 May; 9(5):e1000616. PubMed ID: 21572987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.
    Baker MA; Hynson RM; Ganuelas LA; Mohammadi NS; Liew CW; Rey AA; Duff AP; Whitten AE; Jeffries CM; Delalez NJ; Morimoto YV; Stock D; Armitage JP; Turberfield AJ; Namba K; Berry RM; Lee LK
    Nat Struct Mol Biol; 2016 Mar; 23(3):197-203. PubMed ID: 26854663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly states of FliM and FliG within the flagellar switch complex.
    Sircar R; Borbat PP; Lynch MJ; Bhatnagar J; Beyersdorf MS; Halkides CJ; Freed JH; Crane BR
    J Mol Biol; 2015 Feb; 427(4):867-886. PubMed ID: 25536293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG.
    Levenson R; Zhou H; Dahlquist FW
    Biochemistry; 2012 Jun; 51(25):5052-60. PubMed ID: 22670715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants.
    Thomas D; Morgan DG; DeRosier DJ
    J Bacteriol; 2001 Nov; 183(21):6404-12. PubMed ID: 11591685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.
    Fang X; Gomelsky M
    Mol Microbiol; 2010 Jun; 76(5):1295-305. PubMed ID: 20444091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.