BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28259708)

  • 1. Oral aversion to dietary sugar, ethanol and glycerol correlates with alterations in specific hepatic metabolites in a mouse model of human citrin deficiency.
    Saheki T; Inoue K; Ono H; Fujimoto Y; Furuie S; Yamamura KI; Kuroda E; Ushikai M; Asakawa A; Inui A; Eto K; Kadowaki T; Moriyama M; Sinasac DS; Yamamoto T; Furukawa T; Kobayashi K
    Mol Genet Metab; 2017 Apr; 120(4):306-316. PubMed ID: 28259708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of supplementation on food intake, body weight and hepatic metabolites in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse model of human citrin deficiency.
    Saheki T; Inoue K; Ono H; Katsura N; Yokogawa M; Yoshidumi Y; Furuie S; Kuroda E; Ushikai M; Asakawa A; Inui A; Eto K; Kadowaki T; Sinasac DS; Yamamura K; Kobayashi K
    Mol Genet Metab; 2012 Nov; 107(3):322-9. PubMed ID: 22921887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency.
    Saheki T; Inoue K; Ono H; Tushima A; Katsura N; Yokogawa M; Yoshidumi Y; Kuhara T; Ohse M; Eto K; Kadowaki T; Sinasac DS; Kobayashi K
    Mol Genet Metab; 2011 Dec; 104(4):492-500. PubMed ID: 21908222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model.
    Saheki T; Moriyama M; Kuroda E; Funahashi A; Yasuda I; Setogawa Y; Gao Q; Ushikai M; Furuie S; Yamamura KI; Takano K; Nakamura Y; Eto K; Kadowaki T; Sinasac DS; Furukawa T; Horiuchi M; Tai YH
    Sci Rep; 2019 Mar; 9(1):4179. PubMed ID: 30862943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency.
    Saheki T; Iijima M; Li MX; Kobayashi K; Horiuchi M; Ushikai M; Okumura F; Meng XJ; Inoue I; Tajima A; Moriyama M; Eto K; Kadowaki T; Sinasac DS; Tsui LC; Tsuji M; Okano A; Kobayashi T
    J Biol Chem; 2007 Aug; 282(34):25041-52. PubMed ID: 17591776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism for increased hepatic glycerol synthesis in the citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mouse: Urine glycerol and glycerol 3-phosphate as potential diagnostic markers of human citrin deficiency.
    Moriyama M; Fujimoto Y; Rikimaru S; Ushikai M; Kuroda E; Kawabe K; Takano K; Asakawa A; Inui A; Eto K; Kadowaki T; Sinasac DS; Okano Y; Yazaki M; Ikeda S; Zhang C; Song YZ; Sakamoto O; Kure S; Mitsubuchi H; Endo F; Horiuchi M; Nakamura Y; Yamamura K; Saheki T
    Biochim Biophys Acta; 2015 Sep; 1852(9):1787-95. PubMed ID: 25952905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia.
    Sinasac DS; Moriyama M; Jalil MA; Begum L; Li MX; Iijima M; Horiuchi M; Robinson BH; Kobayashi K; Saheki T; Tsui LC
    Mol Cell Biol; 2004 Jan; 24(2):527-36. PubMed ID: 14701727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AGC2 (Citrin) Deficiency-From Recognition of the Disease till Construction of Therapeutic Procedures.
    Saheki T; Moriyama M; Funahashi A; Kuroda E
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32722104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyruvate ameliorates the defect in ureogenesis from ammonia in citrin-deficient mice.
    Moriyama M; Li MX; Kobayashi K; Sinasac DS; Kannan Y; Iijima M; Horiuchi M; Tsui LC; Tanaka M; Nakamura Y; Saheki T
    J Hepatol; 2006 May; 44(5):930-8. PubMed ID: 16458993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mRNA Therapy Improves Metabolic and Behavioral Abnormalities in a Murine Model of Citrin Deficiency.
    Cao J; An D; Galduroz M; Zhuo J; Liang S; Eybye M; Frassetto A; Kuroda E; Funahashi A; Santana J; Mihai C; Benenato KE; Kumarasinghe ES; Sabnis S; Salerno T; Coughlan K; Miracco EJ; Levy B; Besin G; Schultz J; Lukacs C; Guey L; Finn P; Furukawa T; Giangrande PH; Saheki T; Martini PGV
    Mol Ther; 2019 Jul; 27(7):1242-1251. PubMed ID: 31056400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier.
    Saheki T; Kobayashi K; Iijima M; Moriyama M; Yazaki M; Takei Y; Ikeda S
    Hepatol Res; 2005 Oct; 33(2):181-4. PubMed ID: 16199199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic basis and treatment of citrin deficiency.
    Hayasaka K
    J Inherit Metab Dis; 2021 Jan; 44(1):110-117. PubMed ID: 32740958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase.
    Brown LJ; Koza RA; Everett C; Reitman ML; Marshall L; Fahien LA; Kozak LP; MacDonald MJ
    J Biol Chem; 2002 Sep; 277(36):32892-8. PubMed ID: 12093799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD).
    Saheki T; Kobayashi K
    J Hum Genet; 2002; 47(7):333-41. PubMed ID: 12111366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of daily energy, protein, fat, and carbohydrate intake in citrin-deficient patients: Towards prevention of adult-onset type II citrullinemia.
    Okano Y; Okamoto M; Yazaki M; Inui A; Ohura T; Murayama K; Watanabe Y; Tokuhara D; Takeshima Y
    Mol Genet Metab; 2021 May; 133(1):63-70. PubMed ID: 33741270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Treatment and Pathomechanism of Citrin Deficiency].
    Hayasaka K; Numakura C; Watanabe H
    Brain Nerve; 2015 Jun; 67(6):739-47. PubMed ID: 26062589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency.
    Tavoulari S; Lacabanne D; Thangaratnarajah C; Kunji ERS
    Trends Endocrinol Metab; 2022 Aug; 33(8):539-553. PubMed ID: 35725541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous aralar/slc25a12 can replace citrin/slc25a13 as malate aspartate shuttle component in liver.
    González-Moreno L; Santamaría-Cano A; Paradela A; Martínez-Chantar ML; Martín MÁ; Pérez-Carreras M; García-Picazo A; Vázquez J; Calvo E; González-Aseguinolaza G; Saheki T; Del Arco A; Satrústegui J; Contreras L
    Mol Genet Metab Rep; 2023 Jun; 35():100967. PubMed ID: 36967723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency.
    Wongkittichote P; Tungpradabkul S; Wattanasirichaigoon D; Jensen LT
    J Inherit Metab Dis; 2013 Sep; 36(5):821-30. PubMed ID: 23053473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes mellitus exacerbates citrin deficiency via glucose toxicity.
    Watanabe Y; Numakura C; Tahara T; Fukui K; Torimura T; Hiromatsu Y; Tomotsune K; Yamakawa M; Hayasaka K
    Diabetes Res Clin Pract; 2020 Jun; 164():108159. PubMed ID: 32335094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.