These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 28259780)

  • 1. Regression DCM for fMRI.
    Frässle S; Lomakina EI; Razi A; Friston KJ; Buhmann JM; Stephan KE
    Neuroimage; 2017 Jul; 155():406-421. PubMed ID: 28259780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generative model of whole-brain effective connectivity.
    Frässle S; Lomakina EI; Kasper L; Manjaly ZM; Leff A; Pruessmann KP; Buhmann JM; Stephan KE
    Neuroimage; 2018 Oct; 179():505-529. PubMed ID: 29807151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression dynamic causal modeling for resting-state fMRI.
    Frässle S; Harrison SJ; Heinzle J; Clementz BA; Tamminga CA; Sweeney JA; Gershon ES; Keshavan MS; Pearlson GD; Powers A; Stephan KE
    Hum Brain Mapp; 2021 May; 42(7):2159-2180. PubMed ID: 33539625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-brain estimates of directed connectivity for human connectomics.
    Frässle S; Manjaly ZM; Do CT; Kasper L; Pruessmann KP; Stephan KE
    Neuroimage; 2021 Jan; 225():117491. PubMed ID: 33115664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical model for integrating unsupervised generative embedding and empirical Bayes.
    Raman S; Deserno L; Schlagenhauf F; Stephan KE
    J Neurosci Methods; 2016 Aug; 269():6-20. PubMed ID: 27141854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construct validation of a DCM for resting state fMRI.
    Razi A; Kahan J; Rees G; Friston KJ
    Neuroimage; 2015 Feb; 106():1-14. PubMed ID: 25463471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational Bayesian inversion for hierarchical unsupervised generative embedding (HUGE).
    Yao Y; Raman SS; Schiek M; Leff A; Frässle S; Stephan KE
    Neuroimage; 2018 Oct; 179():604-619. PubMed ID: 29964187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability of dynamic causal modeling for fMRI.
    Frässle S; Stephan KE; Friston KJ; Steup M; Krach S; Paulus FM; Jansen A
    Neuroimage; 2015 Aug; 117():56-66. PubMed ID: 26004501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset.
    Bulgarelli C; Blasi A; Arridge S; Powell S; de Klerk CCJM; Southgate V; Brigadoi S; Penny W; Tak S; Hamilton A
    Neuroimage; 2018 Jul; 175():413-424. PubMed ID: 29655936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inversion of hierarchical Bayesian models using Gaussian processes.
    Lomakina EI; Paliwal S; Diaconescu AO; Brodersen KH; Aponte EA; Buhmann JM; Stephan KE
    Neuroimage; 2015 Sep; 118():133-45. PubMed ID: 26048619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI.
    Zeidman P; Jafarian A; Corbin N; Seghier ML; Razi A; Price CJ; Friston KJ
    Neuroimage; 2019 Oct; 200():174-190. PubMed ID: 31226497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Test-retest reliability of regression dynamic causal modeling.
    Frässle S; Stephan KE
    Netw Neurosci; 2022 Feb; 6(1):135-160. PubMed ID: 35356192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale DCMs for resting-state fMRI.
    Razi A; Seghier ML; Zhou Y; McColgan P; Zeidman P; Park HJ; Sporns O; Rees G; Friston KJ
    Netw Neurosci; 2017; 1(3):222-241. PubMed ID: 29400357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
    Taghia J; Ryali S; Chen T; Supekar K; Cai W; Menon V
    Neuroimage; 2017 Jul; 155():271-290. PubMed ID: 28267626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse DCM for whole-brain effective connectivity from resting-state fMRI data.
    Prando G; Zorzi M; Bertoldo A; Corbetta M; Zorzi M; Chiuso A
    Neuroimage; 2020 Mar; 208():116367. PubMed ID: 31812714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian networks for fMRI: a primer.
    Mumford JA; Ramsey JD
    Neuroimage; 2014 Feb; 86():573-82. PubMed ID: 24140939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic causal modelling of EEG and fMRI to characterize network architectures in a simple motor task.
    Bönstrup M; Schulz R; Feldheim J; Hummel FC; Gerloff C
    Neuroimage; 2016 Jan; 124(Pt A):498-508. PubMed ID: 26334836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.