These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 28260035)

  • 1. Screening of potential gene markers for predicting carotid atheroma plaque formation using bioinformatics approaches.
    Wang G; Kuai D; Yang Y; Yang G; Wei Z; Zhao W
    Mol Med Rep; 2017 Apr; 15(4):2039-2048. PubMed ID: 28260035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining.
    Wang W; Zhang K; Zhang H; Li M; Zhao Y; Wang B; Xin W; Yang W; Zhang J; Yue S; Yang X
    Med Sci Monit; 2019 Dec; 25():9949-9962. PubMed ID: 31875420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of novel genes and pathways in carotid atheroma using integrated bioinformatic methods.
    Nai W; Threapleton D; Lu J; Zhang K; Wu H; Fu Y; Wang Y; Ou Z; Shan L; Ding Y; Yu Y; Dai M
    Sci Rep; 2016 Jan; 6():18764. PubMed ID: 26742467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression profile analysis of the progression of carotid atherosclerotic plaques.
    Liu W; Zhao Y; Wu J
    Mol Med Rep; 2018 Apr; 17(4):5789-5795. PubMed ID: 29436628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring of the molecular mechanism of rhinitis via bioinformatics methods.
    Song Y; Yan Z
    Mol Med Rep; 2018 Feb; 17(2):3014-3020. PubMed ID: 29257233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification by microarray technology of key genes involved in the progression of carotid atherosclerotic plaque.
    Wang J; Wei B; Cao S; Xu F; Chen W; Lin H; Du C; Sun Z
    Genes Genet Syst; 2014; 89(6):253-8. PubMed ID: 25948119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the Underlying Genes and Mechanism of Macrophage-Enriched Ruptured Atherosclerotic Plaques Using Bioinformatics Method.
    Wang H; Liu D; Zhang H
    J Atheroscler Thromb; 2019 Jul; 26(7):636-658. PubMed ID: 30643084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis of transcription profiling of solid pseudopapillary neoplasm of the pancreas.
    Zhang Y; Han X; Wu H; Zhou Y
    Mol Med Rep; 2017 Aug; 16(2):1635-1642. PubMed ID: 28627654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression profile analysis of ventilator-associated pneumonia.
    Xu X; Yuan B; Liang Q; Huang H; Yin X; Sheng X; Nie N; Fang H
    Mol Med Rep; 2015 Nov; 12(5):7455-62. PubMed ID: 26459786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key genes and miRNAs associated with carotid atherosclerosis based on mRNA-seq data.
    Mao Z; Wu F; Shan Y
    Medicine (Baltimore); 2018 Mar; 97(13):e9832. PubMed ID: 29595698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency.
    Zhang Q; He M; Wang J; Liu S; Cheng H; Cheng Y
    Eur J Obstet Gynecol Reprod Biol; 2015 Mar; 186():91-6. PubMed ID: 25666344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of key genes and pathways associated with classical Hodgkin lymphoma by bioinformatics analysis.
    Kuang Z; Guo L; Li X
    Mol Med Rep; 2017 Oct; 16(4):4685-4693. PubMed ID: 28791394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IGFBP6 Is Downregulated in Unstable Carotid Atherosclerotic Plaques According to an Integrated Bioinformatics Analysis and Experimental Verification.
    Liu Y; Huan W; Wu J; Zou S; Qu L
    J Atheroscler Thromb; 2020 Oct; 27(10):1068-1085. PubMed ID: 32037372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn.
    Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G
    Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Potential Key Genes Involved in the Carotid Atherosclerosis.
    Meng Y; Zhang C; Liang L; Wei L; Wang H; Zhou F; Li R; Zou D; Huang X; Liu J
    Clin Interv Aging; 2021; 16():1071-1084. PubMed ID: 34140767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR‑148 family members are putative biomarkers for sepsis.
    Dong L; Li H; Zhang S; Yang G
    Mol Med Rep; 2019 Jun; 19(6):5133-5141. PubMed ID: 31059023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of potential target genes associated with the pathogenesis of osteoarthritis using microarray based analysis.
    Li M; Zhi L; Zhang Z; Bian W; Qiu Y
    Mol Med Rep; 2017 Sep; 16(3):2799-2806. PubMed ID: 28714028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism.
    Wang H; Wang C; Zhang L; Lu Y; Duan Q; Gong Z; Liang A; Song H; Wang L
    Mol Med Rep; 2015 Apr; 11(4):2527-33. PubMed ID: 25434468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of critical genes in nucleus pulposus cells isolated from degenerated intervertebral discs using bioinformatics analysis.
    Zhu Z; Chen G; Jiao W; Wang D; Cao Y; Zhang Q; Wang J
    Mol Med Rep; 2017 Jul; 16(1):553-564. PubMed ID: 28586059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening the molecular targets of ovarian cancer based on bioinformatics analysis.
    Du L; Qian X; Dai C; Wang L; Huang D; Wang S; Shen X
    Tumori; 2015; 101(4):384-9. PubMed ID: 25953442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.