These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 282601)
1. A model for hydration of peptides and its application to the conformational analysis of terminally blocked amino acids and dipeptides. Némethy G; Hodes ZI; Scheraga HA Proc Natl Acad Sci U S A; 1978 Dec; 75(12):5760-4. PubMed ID: 282601 [TBL] [Abstract][Full Text] [Related]
2. Conformational study on trans- and cis-N-acetyl-N'-methylamides of Pro-Xaa dipeptides. Han SJ; Kang YK Int J Pept Protein Res; 1993 Dec; 42(6):518-26. PubMed ID: 8307683 [TBL] [Abstract][Full Text] [Related]
3. Conformational characteristics of the N-acetyl-N'-methylamides of the four (Lys, Tyr) dipeptides. Rae ID; Leach SJ; Minasian E; Smith JA; Zimmerman SS; Weigold JA; Hodes ZI; Némethy G; Woody RW; Scheraga HA Int J Pept Protein Res; 1981 May; 17(5):575-92. PubMed ID: 7309363 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic backbone preferences are fully present in blocked amino acids. Avbelj F; Grdadolnik SG; Grdadolnik J; Baldwin RL Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1272-7. PubMed ID: 16423894 [TBL] [Abstract][Full Text] [Related]
5. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
6. Local interactions in peptides. 1H-1H, 13C-H coupling constants and calculations for the conformational analysis of N-acetyl-N'-methylamides of aliphatic amino acids. Fermandjian S; Sakarellos C; Aumelas A; Toma F; Gresh N Int J Pept Protein Res; 1990 May; 35(5):473-80. PubMed ID: 2165470 [TBL] [Abstract][Full Text] [Related]
7. Reverse turns in blocked dipeptides are intrinsically unstable in water. Tobias DJ; Sneddon SF; Brooks CL J Mol Biol; 1990 Dec; 216(3):783-96. PubMed ID: 2258940 [TBL] [Abstract][Full Text] [Related]
8. Conformational equilibria of terminally blocked single amino acids at the water-hexane interface. A molecular dynamics study. Chipot C; Pohorille A J Phys Chem B; 1998 Jan; 102(1):281-90. PubMed ID: 11541119 [TBL] [Abstract][Full Text] [Related]
9. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Ooi T; Oobatake M; Némethy G; Scheraga HA Proc Natl Acad Sci U S A; 1987 May; 84(10):3086-90. PubMed ID: 3472198 [TBL] [Abstract][Full Text] [Related]
10. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis. Yamazaki T; Nunami K; Goodman M Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501 [TBL] [Abstract][Full Text] [Related]
11. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. II. Phi-psi maps for N-acetyl alanine N'-methyl amide: comparisons, contrasts and simple experimental tests. Roterman IK; Lambert MH; Gibson KD; Scheraga HA J Biomol Struct Dyn; 1989 Dec; 7(3):421-53. PubMed ID: 2627294 [TBL] [Abstract][Full Text] [Related]
12. Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP. Zimmerman SS; Pottle MS; Némethy G; Scheraga HA Macromolecules; 1977; 10(1):1-9. PubMed ID: 839855 [TBL] [Abstract][Full Text] [Related]
13. Role of solvent in determining conformational preferences of alanine dipeptide in water. Drozdov AN; Grossfield A; Pappu RV J Am Chem Soc; 2004 Mar; 126(8):2574-81. PubMed ID: 14982467 [TBL] [Abstract][Full Text] [Related]
14. Conformation of aminosuccinyl dipeptides Ac-Asu-X-NHMe from empirical energy calculations. Capasso S; Mattia CA; Mazzarella L; Sica F; Zagari A Pept Res; 1990; 3(6):262-70. PubMed ID: 2134069 [TBL] [Abstract][Full Text] [Related]
15. Conformational study of angiotensin II. Shin YA; Yoo SE Biopolymers; 1996 Feb; 38(2):183-90. PubMed ID: 8589252 [TBL] [Abstract][Full Text] [Related]
16. Conformational analysis of thiopeptides: free energy calculations on the effects of thio-substitutions on the conformational distributions of alanine dipeptides. Tran TT; Burgess AW; Treutlein H; Zeng J J Mol Graph Model; 2001; 20(3):245-56. PubMed ID: 11766049 [TBL] [Abstract][Full Text] [Related]
17. Comparison of hydration behavior and conformational preferences of the Trp-cage mini-protein in different rigid-body water models. Gupta M; Nayar D; Chakravarty C; Bandyopadhyay S Phys Chem Chem Phys; 2016 Dec; 18(48):32796-32813. PubMed ID: 27878168 [TBL] [Abstract][Full Text] [Related]
18. Assessing backbone solvation effects in the conformational propensities of amino acid residues in unfolded peptides. Ilawe NV; Raeber AE; Schweitzer-Stenner R; Toal SE; Wong BM Phys Chem Chem Phys; 2015 Oct; 17(38):24917-24. PubMed ID: 26343224 [TBL] [Abstract][Full Text] [Related]
19. Determination of conformational preferences of dipeptides using vibrational spectroscopy. Grdadolnik J; Grdadolnik SG; Avbelj F J Phys Chem B; 2008 Mar; 112(9):2712-8. PubMed ID: 18260662 [TBL] [Abstract][Full Text] [Related]
20. An experimental and theoretical investigation of the core level spectra of a series of amino acids, dipeptides and polypeptides. Clark DT; Peeling J; Colling L Biochim Biophys Acta; 1976 Dec; 453(2):533-45. PubMed ID: 999903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]