These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28260133)

  • 1. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.
    Kis M; Sipka G; Maróti P
    Photosynth Res; 2017 May; 132(2):197-209. PubMed ID: 28260133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria.
    Sipka G; Kis M; Maróti P
    Photosynth Res; 2018 Jun; 136(3):379-392. PubMed ID: 29285578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake.
    Deng X; Jia P
    Bioresour Technol; 2011 Feb; 102(3):3083-8. PubMed ID: 21094044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purple non-sulfur photosynthetic bacteria monitor environmental stresses.
    Kis M; Sipka G; Asztalos E; Rázga Z; Maróti P
    J Photochem Photobiol B; 2015 Oct; 151():110-7. PubMed ID: 26232748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolved organic matter kinetically controls mercury bioavailability to bacteria.
    Chiasson-Gould SA; Blais JM; Poulain AJ
    Environ Sci Technol; 2014 Mar; 48(6):3153-61. PubMed ID: 24524696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dactylis glomerata L. cultivation on mercury contaminated soil and its physiological response to granular sulphur aided phytostabilization.
    Pogrzeba M; Rusinowski S; Krzyżak J; Szada-Borzyszkowska A; McCalmont JP; Zieleźnik-Rusinowska P; Słaboń N; Sas-Nowosielska A
    Environ Pollut; 2019 Dec; 255(Pt 2):113271. PubMed ID: 31550655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioremediation of mercury: not properly exploited in contaminated soils!
    Mahbub KR; Bahar MM; Labbate M; Krishnan K; Andrews S; Naidu R; Megharaj M
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):963-976. PubMed ID: 28074219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis.
    Szczuka A; Morel FM; Schaefer JK
    Environ Sci Technol; 2015 Jun; 49(12):7432-8. PubMed ID: 25984982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    ZÁrate A; Florez J; Angulo E; Varela-Prieto L; Infante C; Barrios F; Barraza B; Gallardo DI; Valdés J
    J Microbiol Biotechnol; 2017 Jun; 27(6):1138-1149. PubMed ID: 28301920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain.
    Quiñones MA; Ruiz-Díez B; Fajardo S; López-Berdonces MA; Higueras PL; Fernández-Pascual M
    Plant Physiol Biochem; 2013 Dec; 73():168-75. PubMed ID: 24125840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal.
    Genç O; Soysal L; Bayramoğlu G; Arica MY; Bektaş S
    J Hazard Mater; 2003 Feb; 97(1-3):111-25. PubMed ID: 12573833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of toxic effect of mercury on Microcystis aeruginosa: Correlation between intracellular mercury content at single cells level and algae physiological responses.
    Tang W; He M; Chen B; Ruan G; Xia Y; Xu P; Song G; Bi Y; Hu B
    Sci Total Environ; 2023 Feb; 858(Pt 2):159894. PubMed ID: 36336050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation.
    Priyadarshanee M; Chatterjee S; Rath S; Dash HR; Das S
    J Hazard Mater; 2022 Feb; 423(Pt A):126985. PubMed ID: 34464861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions.
    Huang MR; Li S; Li XG
    J Phys Chem B; 2010 Mar; 114(10):3534-42. PubMed ID: 20175512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study.
    Arshadi M; Abdolmaleki MK; Mousavinia F; Foroughifard S; Karimzadeh A
    J Colloid Interface Sci; 2017 Jan; 486():296-308. PubMed ID: 27723483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early detection of mercury contamination by fluorescence induction of photosynthetic bacteria.
    Asztalos E; Italiano F; Milano F; Maróti P; Trotta M
    Photochem Photobiol Sci; 2010 Sep; 9(9):1218-23. PubMed ID: 20664861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process.
    Deng X; Wang P
    Bioresour Technol; 2012 Oct; 121():342-7. PubMed ID: 22864169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.
    Giovanella P; Cabral L; Costa AP; de Oliveira Camargo FA; Gianello C; Bento FM
    Ecotoxicol Environ Saf; 2017 Jun; 140():162-169. PubMed ID: 28259060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria.
    Ndu U; Barkay T; Mason RP; Traore Schartup A; Al-Farawati R; Liu J; Reinfelder JR
    PLoS One; 2015; 10(9):e0138333. PubMed ID: 26371471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.