BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 28260610)

  • 1. Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo - Alpha and Delta models.
    Desouza ED; Gherase MR; Fleming DE; Chettle DR; O'Meara JM; McNeill FE
    Appl Radiat Isot; 2017 May; 123():82-93. PubMed ID: 28260610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence.
    Fleming DE; Nader MN; Foran KA; Groskopf C; Reno MC; Ware CS; Tehrani M; Guimarães D; Parsons PJ
    Appl Radiat Isot; 2017 Feb; 120():1-6. PubMed ID: 27889549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of lead in bone phantoms and arsenic in soft tissue phantoms using synchrotron radiation and a portable x-ray fluorescence system.
    Groskopf C; Bennett SR; Gherase MR; Fleming DEB
    Physiol Meas; 2017 Feb; 38(2):374-386. PubMed ID: 28134135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings.
    Fleming DE; Ware CS
    Appl Radiat Isot; 2017 Mar; 121():91-95. PubMed ID: 28040603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.
    Nie LH; Sanchez S; Newton K; Grodzins L; Cleveland RO; Weisskopf MG
    Phys Med Biol; 2011 Feb; 56(3):N39-51. PubMed ID: 21242629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of a method detection limit for an in vivo XRF arsenic detection system.
    Studinski RC; McNeill FE; Chettle DR; O'Meara JM
    Phys Med Biol; 2005 Feb; 50(3):521-30. PubMed ID: 15773727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The radiation dose from a proposed measurement of arsenic and selenium in human skin.
    Gherase MR; Mader JE; Fleming DE
    Phys Med Biol; 2010 Sep; 55(18):5499-514. PubMed ID: 20798460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feasibility of measuring silver concentrations in vivo with x-ray fluorescence.
    Graham SA; O'Meara JM
    Phys Med Biol; 2004 Aug; 49(15):N259-66. PubMed ID: 15379029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.
    Parsons C; Margui Grabulosa E; Pili E; Floor GH; Roman-Ross G; Charlet L
    J Hazard Mater; 2013 Nov; 262():1213-22. PubMed ID: 22819961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing arsenic in human toenail clippings using portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT; Nader MN; Atia M; Hicks JMT; Sweeney E; McFarlane CR; Kim JS; Keltie E; Adisesh A
    Appl Radiat Isot; 2021 Jan; 167():109491. PubMed ID: 33121893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a novel portable x-ray fluorescence screening tool for detection of arsenic exposure.
    McIver DJ; VanLeeuwen JA; Knafla AL; Campbell JA; Alexander KM; Gherase MR; Guernsey JR; Fleming DE
    Physiol Meas; 2015 Dec; 36(12):2443-59. PubMed ID: 26536141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation of a polarised X-ray source for the in vivo measurement of platinum in head and neck tumours.
    Ali PA; Bennet C; el-Sharkawi AM; Hancock DA
    Appl Radiat Isot; 1998; 49(5-6):647-50. PubMed ID: 9569567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood.
    Block CN; Shibata T; Solo-Gabriele HM; Townsend TG
    Environ Pollut; 2007 Jul; 148(2):627-33. PubMed ID: 17241725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid, high sensitivity technique for measuring arsenic in skin phantoms using a portable x-ray tube and detector.
    Fleming DE; Gherase MR
    Phys Med Biol; 2007 Oct; 52(19):N459-65. PubMed ID: 17881796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid evaluation of arsenic contamination in paddy soils using field portable X-ray fluorescence spectrometry.
    Liang JH; Liu PP; Chen Z; Sun GX; Li H
    J Environ Sci (China); 2018 Feb; 64():345-351. PubMed ID: 29478657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous detection of As and Se in polyester resin skin phantoms.
    Gherase MR; Vallee ME; Fleming DE
    Appl Radiat Isot; 2010; 68(4-5):743-5. PubMed ID: 19819714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings.
    Gherase MR; Fleming DE
    Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.
    Jiang TJ; Guo Z; Liu JH; Huang XJ
    Anal Chem; 2015 Aug; 87(16):8503-9. PubMed ID: 26211572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.