These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease. Tong T; Gao Q; Guerrero R; Ledig C; Chen L; Rueckert D; Initiative ADN IEEE Trans Biomed Eng; 2017 Jan; 64(1):155-165. PubMed ID: 27046891 [TBL] [Abstract][Full Text] [Related]
4. A Classification Algorithm by Combination of Feature Decomposition and Kernel Discriminant Analysis (KDA) for Automatic MR Brain Image Classification and AD Diagnosis. Elahifasaee F; Li F; Yang M Comput Math Methods Med; 2019; 2019():1437123. PubMed ID: 32082407 [TBL] [Abstract][Full Text] [Related]
6. Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error. Beheshti I; Demirel H; Farokhian F; Yang C; Matsuda H; Comput Methods Programs Biomed; 2016 Dec; 137():177-193. PubMed ID: 28110723 [TBL] [Abstract][Full Text] [Related]
7. Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. Ramírez J; Górriz JM; Ortiz A; Martínez-Murcia FJ; Segovia F; Salas-Gonzalez D; Castillo-Barnes D; Illán IA; Puntonet CG; J Neurosci Methods; 2018 May; 302():47-57. PubMed ID: 29242123 [TBL] [Abstract][Full Text] [Related]
8. Multi-Objective Genetic Algorithms to Find Most Relevant Volumes of the Brain Related to Alzheimer's Disease and Mild Cognitive Impairment. Valenzuela O; Jiang X; Carrillo A; Rojas I Int J Neural Syst; 2018 Nov; 28(9):1850022. PubMed ID: 29914313 [TBL] [Abstract][Full Text] [Related]
9. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease. Ota K; Oishi N; Ito K; Fukuyama H; ; J Neurosci Methods; 2015 Dec; 256():168-83. PubMed ID: 26318777 [TBL] [Abstract][Full Text] [Related]
10. Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment. Liu M; Zhang D; Shen D IEEE Trans Med Imaging; 2016 Jun; 35(6):1463-74. PubMed ID: 26742127 [TBL] [Abstract][Full Text] [Related]
11. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease. Schmitter D; Roche A; Maréchal B; Ribes D; Abdulkadir A; Bach-Cuadra M; Daducci A; Granziera C; Klöppel S; Maeder P; Meuli R; Krueger G; Neuroimage Clin; 2015; 7():7-17. PubMed ID: 25429357 [TBL] [Abstract][Full Text] [Related]
12. Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease. Beheshti I; Demirel H; Comput Biol Med; 2015 Sep; 64():208-16. PubMed ID: 26226415 [TBL] [Abstract][Full Text] [Related]
13. Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data. Dyrba M; Barkhof F; Fellgiebel A; Filippi M; Hausner L; Hauenstein K; Kirste T; Teipel SJ; J Neuroimaging; 2015; 25(5):738-47. PubMed ID: 25644739 [TBL] [Abstract][Full Text] [Related]
14. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support. Khedher L; Illán IA; Górriz JM; Ramírez J; Brahim A; Meyer-Baese A Int J Neural Syst; 2017 May; 27(3):1650050. PubMed ID: 27776438 [TBL] [Abstract][Full Text] [Related]
17. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree. Jin M; Deng W J Neurosci Methods; 2018 May; 302():35-41. PubMed ID: 29486213 [TBL] [Abstract][Full Text] [Related]
18. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
19. Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. Gupta Y; Lee KH; Choi KY; Lee JJ; Kim BC; Kwon GR; ; PLoS One; 2019; 14(10):e0222446. PubMed ID: 31584953 [TBL] [Abstract][Full Text] [Related]
20. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]