These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28261005)

  • 1. A Unified Parameterization of Human Gait Across Ambulation Modes.
    Embry KR; Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2179-2183. PubMed ID: 28261005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines.
    Embry KR; Villarreal DJ; Macaluso RL; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2342-2350. PubMed ID: 30403633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Continuously Varying Kinematics for Prosthetic Leg Control Applications.
    Embry KR; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():262-272. PubMed ID: 33320814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Individualizing Continuous Joint Kinematics Using Gaussian Process Enhanced Fourier Series.
    Huang Y; An H; Ma H; Wei Q
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():779-788. PubMed ID: 36417749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual prototyping of a semi-active transfemoral prosthetic leg.
    Lui ZW; Awad MI; Abouhossein A; Dehghani-Sanij AA; Messenger N
    Proc Inst Mech Eng H; 2015 May; 229(5):350-61. PubMed ID: 25991714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanics of functional asymmetry in bipedal walking.
    Gregg RD; Dhaher YY; Degani A; Lynch KM
    IEEE Trans Biomed Eng; 2012 May; 59(5):1310-8. PubMed ID: 22328168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds.
    Nymark JR; Balmer SJ; Melis EH; Lemaire ED; Millar S
    J Rehabil Res Dev; 2005; 42(4):523-34. PubMed ID: 16320147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of surface on kinematic gait parameters and lower extremity joints mobility.
    Staszkiewicz R; Chwała W; Forczek W; Laska J
    Acta Bioeng Biomech; 2012; 14(1):75-82. PubMed ID: 22741545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.
    Peng J; Fey NP; Kuiken TA; Hargrove LJ
    J Biomech; 2016 Feb; 49(4):528-36. PubMed ID: 26830440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preserved gait kinematics during controlled body unloading.
    Awai L; Franz M; Easthope CS; Vallery H; Curt A; Bolliger M
    J Neuroeng Rehabil; 2017 Apr; 14(1):25. PubMed ID: 28376829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary Experiments with a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds.
    Quintero D; Villarreal DJ; Gregg RD
    Rep U S; 2016 Oct; 2016():5427-5433. PubMed ID: 28392969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of optimization in single- and inter-leg gait dynamics.
    Wuehr M; Pradhan C; Brandt T; Jahn K; Schniepp R
    Gait Posture; 2014 Feb; 39(2):733-8. PubMed ID: 24210648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy.
    Wu M; Kim J; Arora P; Gaebler-Spira DJ; Zhang Y
    Neural Plast; 2016; 2016():5020348. PubMed ID: 27651955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions.
    Hejrati B; Chesebrough S; Bo Foreman K; Abbott JJ; Merryweather AS
    Hum Mov Sci; 2016 Oct; 49():104-15. PubMed ID: 27367784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-selected gait speed--over ground versus self-paced treadmill walking, a solution for a paradox.
    Plotnik M; Azrad T; Bondi M; Bahat Y; Gimmon Y; Zeilig G; Inzelberg R; Siev-Ner I
    J Neuroeng Rehabil; 2015 Feb; 12():20. PubMed ID: 25881130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.