These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28261013)

  • 1. Unified Phase Variables of Relative Degree Two for Human Locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6262-6267. PubMed ID: 28261013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey of phase variable candidates of human locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4017-21. PubMed ID: 25570873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations.
    Villarreal DJ; Poonawala HA; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):265-278. PubMed ID: 27187967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL.
    Mohammadi A; Gregg RD
    Proc ASME Dyn Syst Control Conf; 2018 Sep; 2018():. PubMed ID: 30906619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase resetting and intermittent control at the edge of stability in a simple biped model generates 1/f-like gait cycle variability.
    Fu C; Suzuki Y; Morasso P; Nomura T
    Biol Cybern; 2020 Feb; 114(1):95-111. PubMed ID: 31960137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Unified Parameterization of Human Gait Across Ambulation Modes.
    Embry KR; Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2179-2183. PubMed ID: 28261005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterizing Human Locomotion Across Quasi-Random Treadmill Perturbations and Inclines.
    Macaluso R; Embry K; Villarreal DJ; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():508-516. PubMed ID: 33556013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presenting joint kinematics of human locomotion using phase plane portraits and Poincaré maps.
    Hurmuzlu Y; Basdogan C; Carollo JJ
    J Biomech; 1994 Dec; 27(12):1495-9. PubMed ID: 7528748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piecewise and unified phase variables in the control of a powered prosthetic leg.
    Villarreal DJ; Quintero D; Gregg RD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1425-1430. PubMed ID: 28814020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic stability and phase resetting during biped gait.
    Nomura T; Kawa K; Suzuki Y; Nakanishi M; Yamasaki T
    Chaos; 2009 Jun; 19(2):026103. PubMed ID: 19566263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromechanical control of locomotion in the rat.
    Thota AK; Watson SC; Knapp E; Thompson B; Jung R
    J Neurotrauma; 2005 Apr; 22(4):442-65. PubMed ID: 15853462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of the gait transition speed during human locomotion: kinematic factors.
    Hreljac A
    J Biomech; 1995 Jun; 28(6):669-77. PubMed ID: 7601866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.