These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28261013)

  • 21. Classification and analysis of the natural corner curving motion of humans based on gait motion.
    Akiyama Y; Toda H; Ogura T; Okamoto S; Yamada Y
    Gait Posture; 2018 Feb; 60():15-21. PubMed ID: 29128688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are kinematics of the walk related to the locomotion of a warmblood horse at the trot?
    Back W; Schamhardt HC; Barneveld A
    Vet Q; 1996; 18 Suppl 2():S79-84. PubMed ID: 8933680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of variable-damping control for prosthetic knee based on a simulated biped.
    Zhao J; Berns K; de Souza Baptista R; Bo AP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650364. PubMed ID: 24187183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.
    Dadashzadeh B; Esmaeili M; Macnab C
    PLoS One; 2017; 12(1):e0170122. PubMed ID: 28118401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of emotion in the kinematics of locomotion.
    Barliya A; Omlor L; Giese MA; Berthoz A; Flash T
    Exp Brain Res; 2013 Mar; 225(2):159-76. PubMed ID: 23250443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy.
    Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K
    Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immediate effects of unilateral restricted ankle motion on gait kinematics in healthy subjects.
    Romkes J; Schweizer K
    Gait Posture; 2015 Mar; 41(3):835-40. PubMed ID: 25800648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards Wearable Comprehensive Capture and Analysis of Skeletal Muscle Activity during Human Locomotion.
    Ma CZ; Ling YT; Shea QTK; Wang LK; Wang XY; Zheng YP
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait analysis before or after varus osteotomy of the femur for hip osteoarthritis.
    Watanabe H; Shimada Y; Sato K; Tsutsumi Y; Sato M
    Biomed Mater Eng; 1998; 8(3-4):177-86. PubMed ID: 10065884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling and Individualizing Continuous Joint Kinematics Using Gaussian Process Enhanced Fourier Series.
    Huang Y; An H; Ma H; Wei Q
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():779-788. PubMed ID: 36417749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines.
    Embry KR; Villarreal DJ; Macaluso RL; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2342-2350. PubMed ID: 30403633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion.
    Mills PM; Morrison S; Lloyd DG; Barrett RS
    J Biomech; 2007; 40(7):1504-11. PubMed ID: 16919639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Perturbation Mechanism for Investigations of Phase Variables in Human Locomotion.
    Villarreal DJ; Quintero D; Gregg RD
    IEEE ROBIO; 2015 Dec; 2015():2065-2071. PubMed ID: 27158684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.