These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28261084)

  • 1. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.
    Khan MJ; Hong KS
    Front Neurorobot; 2017; 11():6. PubMed ID: 28261084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study.
    Khan MJ; Ghafoor U; Hong KS
    Front Hum Neurosci; 2018; 12():479. PubMed ID: 30555313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces.
    Hong KS; Khan MJ; Hong MJ
    Front Hum Neurosci; 2018; 12():246. PubMed ID: 30002623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface.
    Khan MJ; Hong MJ; Hong KS
    Front Hum Neurosci; 2014; 8():244. PubMed ID: 24808844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features.
    Li R; Potter T; Huang W; Zhang Y
    Front Hum Neurosci; 2017; 11():462. PubMed ID: 28966581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using SSVEP-BCI to Continuous Control a Quadcopter with 4-DOF Motions
    Mei J; Xu M; Wang L; Ke Y; Wang Y; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4745-4748. PubMed ID: 33019051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.
    Hong KS; Khan MJ
    Front Neurorobot; 2017; 11():35. PubMed ID: 28790910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI.
    Afzal Khan MN; Hong KS
    Biomed Opt Express; 2021 Oct; 12(10):5939-5954. PubMed ID: 34745714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM.
    Mughal NE; Khan MJ; Khalil K; Javed K; Sajid H; Naseer N; Ghafoor U; Hong KS
    Front Neurorobot; 2022; 16():873239. PubMed ID: 36119719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a compact hybrid brain-computer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels.
    Kwon J; Shin J; Im CH
    PLoS One; 2020; 15(3):e0230491. PubMed ID: 32187208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FGANet: fNIRS-Guided Attention Network for Hybrid EEG-fNIRS Brain-Computer Interfaces.
    Kwak Y; Song WJ; Kim SE
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():329-339. PubMed ID: 35130163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved classification performance of EEG-fNIRS multimodal brain-computer interface based on multi-domain features and multi-level progressive learning.
    Qiu L; Zhong Y; He Z; Pan J
    Front Hum Neurosci; 2022; 16():973959. PubMed ID: 35992956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and classification of three-class initial dips from prefrontal cortex.
    Zafar A; Hong KS
    Biomed Opt Express; 2017 Jan; 8(1):367-383. PubMed ID: 28101424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossing time windows optimization based on mutual information for hybrid BCI.
    Meng M; Dai L; She Q; Ma Y; Kong W
    Math Biosci Eng; 2021 Sep; 18(6):7919-7935. PubMed ID: 34814281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD).
    Khan MU; Hasan MAH
    Front Hum Neurosci; 2020; 14():599802. PubMed ID: 33363459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fNIRS-based brain-computer interfaces: a review.
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. See, Hear, or Feel - to Speak: A Versatile Multiple-Choice Functional Near-Infrared Spectroscopy-Brain-Computer Interface Feasible With Visual, Auditory, or Tactile Instructions.
    Nagels-Coune L; Riecke L; Benitez-Andonegui A; Klinkhammer S; Goebel R; De Weerd P; Lührs M; Sorger B
    Front Hum Neurosci; 2021; 15():784522. PubMed ID: 34899223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.