These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28261321)

  • 41. Super-resolution differential interference contrast microscopy by structured illumination.
    Chen J; Xu Y; Lv X; Lai X; Zeng S
    Opt Express; 2013 Jan; 21(1):112-21. PubMed ID: 23388901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.
    Wang C; Ji N
    Opt Lett; 2012 Jun; 37(11):2001-3. PubMed ID: 22660101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coded aperture correlation holography system with improved performance [Invited].
    Vijayakumar A; Kashter Y; Kelner R; Rosen J
    Appl Opt; 2017 May; 56(13):F67-F77. PubMed ID: 28463243
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High numerical aperture Fourier ptychography: principle, implementation and characterization.
    Ou X; Horstmeyer R; Zheng G; Yang C
    Opt Express; 2015 Feb; 23(3):3472-91. PubMed ID: 25836203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-loss metal-dielectric waveguide mode enabled structured illumination microscopy with 0.18λ
    Meng F; Du L; Yang A; Zhang C; Yuan X
    Opt Express; 2019 Mar; 27(6):9250-9257. PubMed ID: 31052732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Deep-skin multiphoton microscopy in vivo excited at 1600 nm: A comparative investigation with silicone oil and deuterium dioxide immersion.
    Wang K; Pan Y; Tong S; Chen X; Lu Y; Qiu P
    J Biophotonics; 2021 Oct; 14(10):e202100076. PubMed ID: 34160142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Historical development of FINCH from the beginning to single-shot 3D confocal imaging beyond optical resolution [Invited].
    Brooker G; Siegel N
    Appl Opt; 2022 Feb; 61(5):B121-B131. PubMed ID: 35201133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens.
    Sakamaki S; Yoneda N; Nomura T
    Appl Opt; 2020 Aug; 59(22):6612-6618. PubMed ID: 32749362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy.
    Tanabe A; Hibi T; Ipponjima S; Matsumoto K; Yokoyama M; Kurihara M; Hashimoto N; Nemoto T
    J Biomed Opt; 2015 Oct; 20(10):101204. PubMed ID: 26244766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography.
    Wu P; Zhang D; Yuan J; Zeng S; Gong H; Luo Q; Yang X
    Opt Express; 2022 Feb; 30(4):5177-5191. PubMed ID: 35209487
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-shot Fresnel incoherent correlation holography via deep learning based phase-shifting technology.
    Huang T; Zhang Q; Li J; Lu X; Di J; Zhong L; Qin Y
    Opt Express; 2023 Apr; 31(8):12349-12356. PubMed ID: 37157396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improvement of two-dimensional structured illumination microscopy with an incoherent illumination pattern of tunable frequency.
    Shabani H; Doblas A; Saavedra G; Sanchez-Ortiga E; Preza C
    Appl Opt; 2018 Mar; 57(7):B92-B101. PubMed ID: 29521992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution cost-effective compact portable inverted light microscope.
    Purwar P; Han S; Lee Y; Saha B; Sandhan T; Lee J
    J Microsc; 2019 Mar; 273(3):199-209. PubMed ID: 30561003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution.
    Sobieranski AC; Inci F; Tekin HC; Yuksekkaya M; Comunello E; Cobra D; von Wangenheim A; Demirci U
    Light Sci Appl; 2015; 4():. PubMed ID: 29657866
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples.
    Chowdhury S; Dhalla AH; Izatt J
    Biomed Opt Express; 2012 Aug; 3(8):1841-54. PubMed ID: 22876348
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lensless Imaging and Sensing.
    Ozcan A; McLeod E
    Annu Rev Biomed Eng; 2016 Jul; 18():77-102. PubMed ID: 27420569
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resolution-enhanced imaging using interferenceless coded aperture correlation holography with sparse point response.
    Rai MR; Rosen J
    Sci Rep; 2020 Mar; 10(1):5033. PubMed ID: 32193412
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lenses and effective spatial resolution in macroscopic optical mapping.
    Bien H; Parikh P; Entcheva E
    Phys Med Biol; 2007 Feb; 52(4):941-60. PubMed ID: 17264363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of aperture-optimised refractive lenses for hard X-ray full field microscopy.
    Marschall F; Last A; Simon M; Vogt H; Mohr J
    Opt Express; 2016 May; 24(10):10880-9. PubMed ID: 27409908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microscopy illumination engineering using a low-cost liquid crystal display.
    Guo K; Bian Z; Dong S; Nanda P; Wang YM; Zheng G
    Biomed Opt Express; 2015 Feb; 6(2):574-9. PubMed ID: 25780746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.