These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 28261329)

  • 1. Soil CO
    Verlinden MS; Broeckx LS; Wei H; Ceulemans R
    Plant Soil; 2013; 369(1-2):631-644. PubMed ID: 25834286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture.
    Berhongaray G; Janssens IA; King JS; Ceulemans R
    Plant Soil; 2013; 373(1-2):269-283. PubMed ID: 25834288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental costs and benefits of growing
    McCalmont JP; Hastings A; McNamara NP; Richter GM; Robson P; Donnison IS; Clifton-Brown J
    Glob Change Biol Bioenergy; 2017 Mar; 9(3):489-507. PubMed ID: 28331551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water use of a multigenotype poplar short-rotation coppice from tree to stand scale.
    Bloemen J; Fichot R; Horemans JA; Broeckx LS; Verlinden MS; Zenone T; Ceulemans R
    Glob Change Biol Bioenergy; 2017 Feb; 9(2):370-384. PubMed ID: 28239421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycorrhizal inoculation effects on growth and the mycobiome of poplar on two phytomanaged sites after 7-year-short rotation coppicing.
    Ciadamidaro L; Pfendler S; Girardclos O; Zappelini C; Binet P; Bert V; Khasa D; Blaudez D; Chalot M
    Front Plant Sci; 2022; 13():993301. PubMed ID: 36388565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas budget of a poplar bioenergy plantation in Belgium: CO
    Horemans JA; Arriga N; Ceulemans R
    Glob Change Biol Bioenergy; 2019 Dec; 11(12):1435-1443. PubMed ID: 31894184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?
    Kalt G; Mayer A; Theurl MC; Lauk C; Erb KH; Haberl H
    Glob Change Biol Bioenergy; 2019 Nov; 11(11):1283-1297. PubMed ID: 31762785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation.
    Portillo-Estrada M; Zenone T; Arriga N; Ceulemans R
    Glob Change Biol Bioenergy; 2018 Jun; 10(6):405-414. PubMed ID: 29937921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus, uncertainties and challenges for perennial bioenergy crops and land use.
    Whitaker J; Field JL; Bernacchi CJ; Cerri CEP; Ceulemans R; Davies CA; DeLucia EH; Donnison IS; McCalmont JP; Paustian K; Rowe RL; Smith P; Thornley P; McNamara NP
    Glob Change Biol Bioenergy; 2018 Mar; 10(3):150-164. PubMed ID: 29497458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?
    Horemans JA; Van Gaelen H; Raes D; Zenone T; Ceulemans R
    Glob Change Biol Bioenergy; 2017 Jun; 9(6):1151-1164. PubMed ID: 28603557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?
    Agostini F; Gregory AS; Richter GM
    Bioenergy Res; 2015; 8(3):1057-1080. PubMed ID: 26855689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil nitrous oxide flux following land-use reversion from Miscanthus and SRC willow to perennial ryegrass.
    McCalmont JP; Rowe R; Elias D; Whitaker J; McNamara NP; Donnison IS
    Glob Change Biol Bioenergy; 2018 Dec; 10(12):914-929. PubMed ID: 31007723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
    Leff JW; Wieder WR; Taylor PG; Townsend AR; Nemergut DR; Grandy AS; Cleveland CC
    Glob Chang Biol; 2012 Sep; 18(9):2969-79. PubMed ID: 24501071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale.
    Pausch J; Kuzyakov Y
    Glob Chang Biol; 2018 Jan; 24(1):1-12. PubMed ID: 28752603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil carbon and belowground carbon balance of a short-rotation coppice: assessments from three different approaches.
    Berhongaray G; Verlinden MS; Broeckx LS; Janssens IA; Ceulemans R
    Glob Change Biol Bioenergy; 2017 Feb; 9(2):299-313. PubMed ID: 28261329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in soil organic carbon under perennial crops.
    Ledo A; Smith P; Zerihun A; Whitaker J; Vicente-Vicente JL; Qin Z; McNamara NP; Zinn YL; Llorente M; Liebig M; Kuhnert M; Dondini M; Don A; Diaz-Pines E; Datta A; Bakka H; Aguilera E; Hillier J
    Glob Chang Biol; 2020 Jul; 26(7):4158-4168. PubMed ID: 32412147
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.