These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28261445)

  • 1. Evaluating the consequences of salmon nutrients for riparian organisms: Linking condition metrics to stable isotopes.
    Vizza C; Sanderson BL; Coe HJ; Chaloner DT
    Ecol Evol; 2017 Mar; 7(5):1313-1324. PubMed ID: 28261445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of spawning Pacific salmon on terrestrial invertebrates: Insects near spawning habitat are isotopically enriched with nitrogen-15 but display no differences in body size.
    Rammell NF; Dennert AM; Ernst CM; Reynolds JD
    Ecol Evol; 2021 Sep; 11(18):12728-12738. PubMed ID: 34594534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multidecade experiment shows that fertilization by salmon carcasses enhanced tree growth in the riparian zone.
    Quinn TP; Helfield JM; Austin CS; Hovel RA; Bunn AG
    Ecology; 2018 Nov; 99(11):2433-2441. PubMed ID: 30351500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon and nitrogen transfer from a desert stream to riparian predators.
    Sanzone DM; Meyer JL; Marti E; Gardiner EP; Tank JL; Grimm NB
    Oecologia; 2003 Jan; 134(2):238-50. PubMed ID: 12647165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salmon and alder as nitrogen sources to riparian forests in a boreal Alaskan watershed.
    Helfield JM; Naiman RJ
    Oecologia; 2002 Dec; 133(4):573-582. PubMed ID: 28466167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrients from spawning salmon influence leaf area, tissue density, and nitrogen-15 in riparian plant leaves.
    Dennert AM; Elle E; Reynolds JD
    Ecol Evol; 2024 Feb; 14(2):e11041. PubMed ID: 38380061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.
    Holtgrieve GW; Schindler DE
    Ecology; 2011 Feb; 92(2):373-85. PubMed ID: 21618917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-scale spatiotemporal influences of salmon on growth and nitrogen signatures of Sitka spruce tree rings.
    Reimchen TE; Fox CH
    BMC Ecol; 2013 Oct; 13():38. PubMed ID: 24093666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest.
    Hocking MD; Reimchen TE
    BMC Ecol; 2002 Mar; 2():4. PubMed ID: 11914157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence.
    Ishikawa NF; Togashi H; Kato Y; Yoshimura M; Kohmatsu Y; Yoshimizu C; Ogawa NO; Ohte N; Tokuchi N; Ohkouchi N; Tayasu I
    Ecology; 2016 May; 97(5):1146-58. PubMed ID: 27349092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. American dippers indicate contaminant biotransport by Pacific salmon.
    Morrissey CA; Pollet IL; Ormerod SJ; Elliott JE
    Environ Sci Technol; 2012 Jan; 46(2):1153-62. PubMed ID: 22145949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salmon, wildlife, and wine: marine-derived nutrients in human-dominated ecosystems of central California.
    Merz JE; Moyle PB
    Ecol Appl; 2006 Jun; 16(3):999-1009. PubMed ID: 16826998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open riparian canopy and nutrient pollution interactively decrease trophic redundancy and allochthonous resource in streams.
    Zhang J; Tan X; Zhang Q
    Environ Res; 2023 Aug; 231(Pt 3):116296. PubMed ID: 37263470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystem-based management.
    Walsh JC; Pendray JE; Godwin SC; Artelle KA; Kindsvater HK; Field RD; Harding JN; Swain NR; Reynolds JD
    Ecology; 2020 Sep; 101(9):e03060. PubMed ID: 32266971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquatic food-web dynamics following incorporation of nutrients derived from Atlantic anadromous fishes.
    Samways KM; Soto DX; Cunjak RA
    J Fish Biol; 2018 Feb; 92(2):399-419. PubMed ID: 29235101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-stable isotope framework to understand eutrophication in aquatic ecosystems.
    Gooddy DC; Lapworth DJ; Bennett SA; Heaton THE; Williams PJ; Surridge BWJ
    Water Res; 2016 Jan; 88():623-633. PubMed ID: 26562799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salmon nutrients are associated with the phylogenetic dispersion of riparian flowering-plant assemblages.
    Hurteau LA; Mooers AØ; Reynolds JD; Hocking MD
    Ecology; 2016 Feb; 97(2):450-60. PubMed ID: 27145619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential reliance on aquatic prey subsidies influences mercury exposure in riparian arachnids and songbirds.
    Jackson AK; Eagles-Smith CA; Robinson WD
    Ecol Evol; 2021 Jun; 11(11):7003-7017. PubMed ID: 34141271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Critical Assessment of the Ecological Assumptions Underpinning Compensatory Mitigation of Salmon-Derived Nutrients.
    Collins SF; Marcarelli AM; Baxter CV; Wipfli MS
    Environ Manage; 2015 Sep; 56(3):571-86. PubMed ID: 25968140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network.
    Kuglerová L; Jansson R; Agren A; Laudon H; Malm-Renöfält B
    Ecology; 2014 Mar; 95(3):715-25. PubMed ID: 24804455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.