These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 28261668)

  • 41. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans.
    Burgain A; Pic É; Markey L; Tebbji F; Kumamoto CA; Sellam A
    PLoS Pathog; 2019 Dec; 15(12):e1007823. PubMed ID: 31809527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans.
    Silao FGS; Ward M; Ryman K; Wallström A; Brindefalk B; Udekwu K; Ljungdahl PO
    PLoS Genet; 2019 Feb; 15(2):e1007976. PubMed ID: 30742618
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans.
    Rocha CR; Schröppel K; Harcus D; Marcil A; Dignard D; Taylor BN; Thomas DY; Whiteway M; Leberer E
    Mol Biol Cell; 2001 Nov; 12(11):3631-43. PubMed ID: 11694594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systematic analysis of the
    Kramara J; Kim M-J; Ollinger TL; Ristow LC; Wakade RS; Zarnowski R; Wellington M; Andes DR; Mitchell AG; Krysan DJ
    mBio; 2024 Aug; 15(8):e0124924. PubMed ID: 38949302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Respiration supports intraphagosomal filamentation and escape of
    Case NT; Westman J; Hallett MT; Plumb J; Farheen A; Maxson ME; MacAlpine J; Liston SD; Hube B; Robbins N; Whitesell L; Grinstein S; Cowen LE
    mBio; 2023 Dec; 14(6):e0274523. PubMed ID: 38038475
    [No Abstract]   [Full Text] [Related]  

  • 46. Comparative evolution of morphological regulatory functions in Candida species.
    Lackey E; Vipulanandan G; Childers DS; Kadosh D
    Eukaryot Cell; 2013 Oct; 12(10):1356-68. PubMed ID: 23913541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals.
    Hogan DA; Muhlschlegel FA
    Curr Opin Microbiol; 2011 Dec; 14(6):682-6. PubMed ID: 22014725
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deciphering the regulatory mechanisms of the cAMP/protein kinase A pathway and their roles in the pathogenicity of
    Kim JS; Lee KT; Bahn YS
    Microbiol Spectr; 2023 Sep; 11(5):e0215223. PubMed ID: 37671881
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of the
    Wakade RS; Wellington M; Krysan DJ
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168187
    [No Abstract]   [Full Text] [Related]  

  • 50. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress.
    O'Meara TR; Veri AO; Polvi EJ; Li X; Valaei SF; Diezmann S; Cowen LE
    PLoS Genet; 2016 Jun; 12(6):e1006142. PubMed ID: 27341673
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Filamentation Is Associated with Reduced Pathogenicity of Multiple Non-
    Banerjee M; Lazzell AL; Romo JA; Lopez-Ribot JL; Kadosh D
    mSphere; 2019 Oct; 4(5):. PubMed ID: 31619502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Beauvericin Potentiates Azole Activity via Inhibition of Multidrug Efflux, Blocks Candida albicans Morphogenesis, and Is Effluxed via Yor1 and Circuitry Controlled by Zcf29.
    Shekhar-Guturja T; Tebung WA; Mount H; Liu N; Köhler JR; Whiteway M; Cowen LE
    Antimicrob Agents Chemother; 2016 Dec; 60(12):7468-7480. PubMed ID: 27736764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global translational landscape of the Candida albicans morphological transition.
    Mundodi V; Choudhary S; Smith AD; Kadosh D
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Linking cellular actin status with cAMP signaling in Candida albicans.
    Wang Y; Zou H; Fang HM; Zhu Y
    Virulence; 2010; 1(3):202-5. PubMed ID: 21178443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temporal dynamics of
    Wakade RS; Wellington M; Krysan DJ
    mSphere; 2024 Apr; 9(4):e0011024. PubMed ID: 38501830
    [No Abstract]   [Full Text] [Related]  

  • 56. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis.
    Basso V; d'Enfert C; Znaidi S; Bachellier-Bassi S
    Curr Top Microbiol Immunol; 2019; 422():61-99. PubMed ID: 30368597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans.
    Maidan MM; De Rop L; Serneels J; Exler S; Rupp S; Tournu H; Thevelein JM; Van Dijck P
    Mol Biol Cell; 2005 Apr; 16(4):1971-86. PubMed ID: 15673611
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1.
    Woolford CA; Lagree K; Xu W; Aleynikov T; Adhikari H; Sanchez H; Cullen PJ; Lanni F; Andes DR; Mitchell AP
    PLoS Genet; 2016 Dec; 12(12):e1006487. PubMed ID: 27935965
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space.
    Veri AO; Miao Z; Shapiro RS; Tebbji F; O'Meara TR; Kim SH; Colazo J; Tan K; Vyas VK; Whiteway M; Robbins N; Wong KH; Cowen LE
    PLoS Genet; 2018 Mar; 14(3):e1007270. PubMed ID: 29590106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Docking Reveals Critical Residues in
    Ng AWR; Li L; Ng EWL; Li C; Qiao Y
    ACS Infect Dis; 2023 Jul; 9(7):1362-1371. PubMed ID: 37318518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.