These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28262324)

  • 1. Compliance instead of flexibility? On age-related differences in cognitive control during visual search.
    Mertes C; Wascher E; Schneider D
    Neurobiol Aging; 2017 May; 53():169-180. PubMed ID: 28262324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Capture to Inhibition: How does Irrelevant Information Influence Visual Search? Evidence from a Spatial Cuing Paradigm.
    Mertes C; Wascher E; Schneider D
    Front Hum Neurosci; 2016; 10():232. PubMed ID: 27242493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid top-down control over template-guided attention shifts to multiple objects.
    Grubert A; Fahrenfort J; Olivers CNL; Eimer M
    Neuroimage; 2017 Feb; 146():843-858. PubMed ID: 27554532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contingent capture can occur at specific feature values: behavioral and electrophysiological evidence.
    Jiao J; Zhao G; Wang Q; Zhang K; Li H; Sun HJ; Liu Q
    Biol Psychol; 2013 Feb; 92(2):125-34. PubMed ID: 23069637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging and involuntary attention capture: electrophysiological evidence for preserved attentional control with advanced age.
    Lien MC; Gemperle A; Ruthruff E
    Psychol Aging; 2011 Mar; 26(1):188-202. PubMed ID: 20973601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-related potentials dissociate perceptual from response-related age effects in visual search.
    Wiegand I; Finke K; Müller HJ; Töllner T
    Neurobiol Aging; 2013 Mar; 34(3):973-85. PubMed ID: 22921866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contingent attentional capture by top-down control settings: converging evidence from event-related potentials.
    Lien MC; Ruthruff E; Goodin Z; Remington RW
    J Exp Psychol Hum Percept Perform; 2008 Jun; 34(3):509-30. PubMed ID: 18505320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG correlates of visual short-term memory in older age vary with adult lifespan cognitive development.
    Wiegand I; Lauritzen MJ; Osler M; Mortensen EL; Rostrup E; Rask L; Richard N; Horwitz A; Benedek K; Vangkilde S; Petersen A
    Neurobiol Aging; 2018 Feb; 62():210-220. PubMed ID: 29175710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motivation and short-term memory in visual search: Attention's accelerator revisited.
    Schneider D; Bonmassar C; Hickey C
    Cortex; 2018 May; 102():45-56. PubMed ID: 28757149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cognitive-behavioral and electrophysiological evidence of the affective consequences of ignoring stimulus representations in working memory.
    De Vito D; Ferrey AE; Fenske MJ; Al-Aidroos N
    Cogn Affect Behav Neurosci; 2018 Jun; 18(3):460-475. PubMed ID: 29546688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain and Cognitive Mechanisms of Top-Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging.
    Matusz PJ; Turoman N; Tivadar RI; Retsa C; Murray MM
    J Cogn Neurosci; 2019 Mar; 31(3):412-430. PubMed ID: 30513045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal enhancement, not active suppression, follows the contingent capture of visual attention.
    Livingstone AC; Christie GJ; Wright RD; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2017 Feb; 43(2):219-224. PubMed ID: 28134549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unitary focus of spatial attention during attentional capture: Evidence from event-related brain potentials.
    Grubert A; Righi LL; Eimer M
    J Vis; 2013 Jan; 13(3):9. PubMed ID: 23641076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual Learning Induces Persistent Attentional Capture by Nonsalient Shapes.
    Qu Z; Hillyard SA; Ding Y
    Cereb Cortex; 2017 Feb; 27(2):1512-1523. PubMed ID: 26759483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study.
    Eimer M; Kiss M; Press C; Sauter D
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1316-28. PubMed ID: 19803639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging and guided visual search: the role of visual working memory.
    Hahn S; Buttaccio DR
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2018 Jul; 25(4):535-549. PubMed ID: 29770738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attentional capture by masked colour singletons.
    Ansorge U; Horstmann G; Worschech F
    Vision Res; 2010 Sep; 50(19):2015-27. PubMed ID: 20659496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.
    Wykowska A; Schubö A
    J Cogn Neurosci; 2011 Mar; 23(3):645-60. PubMed ID: 19929330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.