These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures Municipality. Guillard C; Zezere J Environ Manage; 2012 Oct; 50(4):721-35. PubMed ID: 22864551 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
4. Landslides susceptibility change over time according to terrain conditions in a mountain area of the tropic region. Pineda MC; Viloria J; Martínez-Casasnovas JA Environ Monit Assess; 2016 Apr; 188(4):255. PubMed ID: 27358998 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691 [TBL] [Abstract][Full Text] [Related]
6. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356 [TBL] [Abstract][Full Text] [Related]
7. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Huang J; Zeng X; Ding L; Yin Y; Li Y Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489 [TBL] [Abstract][Full Text] [Related]
8. Assessment of earthquake-induced landslide inventories and susceptibility maps using slope unit-based logistic regression and geospatial statistics. Pokharel B; Alvioli M; Lim S Sci Rep; 2021 Oct; 11(1):21333. PubMed ID: 34716368 [TBL] [Abstract][Full Text] [Related]
9. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Juliev M; Mergili M; Mondal I; Nurtaev B; Pulatov A; Hübl J Sci Total Environ; 2019 Feb; 653():801-814. PubMed ID: 30759606 [TBL] [Abstract][Full Text] [Related]
12. A Novel Performance Assessment Approach Using Photogrammetric Techniques for Landslide Susceptibility Mapping with Logistic Regression, ANN and Random Forest. Sevgen E; Kocaman S; Nefeslioglu HA; Gokceoglu C Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547342 [TBL] [Abstract][Full Text] [Related]
13. Correlation does not imply geomorphic causation in data-driven landslide susceptibility modelling - Benefits of exploring landslide data collection effects. Steger S; Mair V; Kofler C; Pittore M; Zebisch M; Schneiderbauer S Sci Total Environ; 2021 Jul; 776():145935. PubMed ID: 33652311 [TBL] [Abstract][Full Text] [Related]
14. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941 [TBL] [Abstract][Full Text] [Related]
15. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Guri PK; Ray PK; Patel RC Environ Monit Assess; 2015 Jun; 187(6):324. PubMed ID: 25944750 [TBL] [Abstract][Full Text] [Related]
16. Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study. Li L; Lan H Int J Environ Res Public Health; 2020 Nov; 17(21):. PubMed ID: 33139639 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model. Zhang T; Han L; Han J; Li X; Zhang H; Wang H Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266933 [TBL] [Abstract][Full Text] [Related]
18. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Chen W; Peng J; Hong H; Shahabi H; Pradhan B; Liu J; Zhu AX; Pei X; Duan Z Sci Total Environ; 2018 Jun; 626():1121-1135. PubMed ID: 29898519 [TBL] [Abstract][Full Text] [Related]
19. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method. Arca D; Kutoğlu HŞ; Becek K Environ Monit Assess; 2018 Nov; 190(12):725. PubMed ID: 30430322 [TBL] [Abstract][Full Text] [Related]
20. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]