These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 282624)

  • 1. Loss of proliferative calcium dependence: simple in vitro indicator of tumorigenicity.
    Swierenga SH; Whitfield JF; Karasaki S
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6069-72. PubMed ID: 282624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells.
    Boynton AL; Whitfield JF
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1651-4. PubMed ID: 1064038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells.
    Boynton AL; Whitfield JF; Isaacs RJ; Tremblay RG
    Cancer Res; 1977 Aug; 37(8 Pt 1):2657-61. PubMed ID: 872093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of reduced calcium on proliferation and cell viability in tumorigenic and nontumorigenic rat tracheal epithelial cell lines.
    Klann RC; Marchok AC
    Cell Biol Int Rep; 1984 Feb; 8(2):137-46. PubMed ID: 6713547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation.
    Boynton AL; Whitfield JF; Isaacs RJ; Tremblay R
    J Cell Physiol; 1977 Aug; 92(2):241-7. PubMed ID: 195967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium requirements for the proliferation of cells infected with a temperature-sensitive mutant of Rous sarcoma virus.
    Boynton AL; Whitfield JF
    Cancer Res; 1978 May; 38(5):1237-40. PubMed ID: 205359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colony-forming ability in calcium-poor medium in vitro and tumorigenicity in vivo not coupled in clones of transformed rat hepatic epithelial cells.
    Grisham JW; Smith JD; Tsao MS
    Cancer Res; 1984 Jul; 44(7):2831-4. PubMed ID: 6722812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration by malignant transformation of the calcium requirements for cell proliferation in vitro.
    Swierenga SH; Whitfield JF; Gillan DJ
    J Natl Cancer Inst; 1976 Jul; 57(1):125-9. PubMed ID: 1003495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of resistance to the growth inhibitory effects of transforming growth factor beta 1 during the spontaneous transformation of rat liver epithelial cells.
    Huggett AC; Ellis PA; Ford CP; Hampton LL; Rimoldi D; Thorgeirsson SS
    Cancer Res; 1991 Nov; 51(21):5929-36. PubMed ID: 1718589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reduced extracellular calcium requirement for proliferation by neoplastic hepatocytes.
    Swierenga SH; Whitfield JF; Morris HP
    In Vitro; 1978 Jun; 14(6):527-35. PubMed ID: 210108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The novel analog 1,24(S)-dihydroxyvitamin D2 is as equipotent as 1,25-dihydroxyvitamin D3 in growth regulation of cancer cell lines.
    Levy Y; Knutson JC; Bishop C; Shany S
    Anticancer Res; 1998; 18(3A):1769-75. PubMed ID: 9673403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic modulation during tumorigenesis by clones of transformed rat liver epithelial cells.
    Tsao MS; Grisham JW
    Cancer Res; 1987 Mar; 47(5):1282-6. PubMed ID: 2880659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential dependence of the tumorigenicity of chemically transformed rat liver epithelial cells on autocrine production of transforming growth factor alpha.
    Duddy SK; Earp HS; Russell WE; Smith GJ; Grisham JW
    Cell Growth Differ; 1995 Mar; 6(3):251-61. PubMed ID: 7794793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased DNA synthesis in SCC-25 cells with ETYA and SC41661.
    Ondrey FG; Juhn SK; Anderson KM; Adams GL
    Adv Exp Med Biol; 1997; 400A():513-6. PubMed ID: 9547598
    [No Abstract]   [Full Text] [Related]  

  • 15. Expression of the tumor-specific and calcium-binding protein oncomodulin during chemical transformation of rat fibroblasts.
    Sommer EW; Heizmann CW
    Cancer Res; 1989 Feb; 49(4):899-905. PubMed ID: 2912560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colony morphology and growth in agarose as tests for spontaneous neoplastic transformation in vitro.
    Tucker RW; Sanford KK; Handleman SL; Jones GM
    Cancer Res; 1977 May; 37(5):1571-9. PubMed ID: 851964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse correlation of collagen production to anchorage independence and tumorigenicity in W8- and M-cell lines.
    Smith BD; Mahoney AP; Feldman RS
    Cancer Res; 1983 Sep; 43(9):4275-82. PubMed ID: 6871864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversion of human prostate tumorigenic growth by azatyrosine.
    Benoit RM; Eiseman J; Jacobs SC; Kyprianou N
    Urology; 1995 Sep; 46(3):370-7. PubMed ID: 7660512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific inhibition of proliferation of nonmalignant rat hepatic cells by a factor from rat liver.
    McMahon JB; Iype PT
    Cancer Res; 1980 Apr; 40(4):1249-54. PubMed ID: 7357555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface membrane nucleoside triphosphatase activity and tumorigenicity of cultured liver epithelial cells.
    Karasaki S; Okigaki T
    Cancer Res; 1976 Dec; 36(12):4491-9. PubMed ID: 137072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.