BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28262556)

  • 1. Rapid Discovery of Potent and Selective Glycosidase-Inhibiting De Novo Peptides.
    Jongkees SAK; Caner S; Tysoe C; Brayer GD; Withers SG; Suga H
    Cell Chem Biol; 2017 Mar; 24(3):381-390. PubMed ID: 28262556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Tuneable Retaining Glycosidase-Inhibiting Peptides by Mimicry of a Plant Flavonol Warhead.
    Yoshisada R; van Gijzel L; Jongkees SAK
    Chembiochem; 2017 Dec; 18(23):2333-2339. PubMed ID: 28984404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding Then Binding vs Folding Through Binding in Macrocyclic Peptide Inhibitors of Human Pancreatic α-Amylase.
    Goldbach L; Vermeulen BJA; Caner S; Liu M; Tysoe C; van Gijzel L; Yoshisada R; Trellet M; van Ingen H; Brayer GD; Bonvin AMJJ; Jongkees SAK
    ACS Chem Biol; 2019 Aug; 14(8):1751-1759. PubMed ID: 31241898
    [No Abstract]   [Full Text] [Related]  

  • 4. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of cooked starch digestion process using recombinant human pancreatic α-amylase and maltase-glucoamylase for in vitro evaluation of α-glucosidase inhibitors.
    Cao X; Zhang C; Dong Y; Geng P; Bai F; Bai G
    Carbohydr Res; 2015 Sep; 414():15-21. PubMed ID: 26162745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of human pancreatic α-amylase in complex with acarviostatins: Implications for drug design against type II diabetes.
    Qin X; Ren L; Yang X; Bai F; Wang L; Geng P; Bai G; Shen Y
    J Struct Biol; 2011 Apr; 174(1):196-202. PubMed ID: 21111049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two novel potent α-amylase inhibitors from the family of acarviostatins isolated from the culture of Streptomyces coelicoflavus ZG0656.
    Geng P; Sun T; Zhong Q; Li X; Shi L; Bai F; Bai G
    Chem Biodivers; 2013 Mar; 10(3):452-9. PubMed ID: 23495161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2.
    Morimoto J; Hayashi Y; Suga H
    Angew Chem Int Ed Engl; 2012 Apr; 51(14):3423-7. PubMed ID: 22374802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Dissection of Helianthamide Reveals the Basis of Its Potent Inhibition of Human Pancreatic α-Amylase.
    Tysoe C; Withers SG
    Biochemistry; 2018 Sep; 57(37):5384-5387. PubMed ID: 30180544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics studies on the inhibition mechanism of pancreatic α-amylase by glycoconjugated 1H-1,2,3-triazoles: a new class of inhibitors with hypoglycemiant activity.
    Senger MR; Gomes Lda C; Ferreira SB; Kaiser CR; Ferreira VF; Silva FP
    Chembiochem; 2012 Jul; 13(11):1584-93. PubMed ID: 22753086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble vitamins for controlling starch digestion: Conformational scrambling and inhibition mechanism of human pancreatic α-amylase by ascorbic acid and folic acid.
    Borah PK; Sarkar A; Duary RK
    Food Chem; 2019 Aug; 288():395-404. PubMed ID: 30902310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery and characterization of pseudocyclic cystine-knot α-amylase inhibitors with high resistance to heat and proteolytic degradation.
    Nguyen PQ; Wang S; Kumar A; Yap LJ; Luu TT; Lescar J; Tam JP
    FEBS J; 2014 Oct; 281(19):4351-66. PubMed ID: 25040200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving binding affinity and stability of peptide ligands by substituting glycines with D-amino acids.
    Chen S; Gfeller D; Buth SA; Michielin O; Leiman PG; Heinis C
    Chembiochem; 2013 Jul; 14(11):1316-22. PubMed ID: 23828687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro Selection of Macrocyclic α/β
    Wakabayashi R; Kawai M; Katoh T; Suga H
    J Am Chem Soc; 2022 Oct; 144(40):18504-18510. PubMed ID: 36173923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules.
    Koropatkin NM; Smith TJ
    Structure; 2010 Feb; 18(2):200-15. PubMed ID: 20159465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase.
    Wang M; Shi J; Wang L; Hu Y; Ye X; Liu D; Chen J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2589-2596. PubMed ID: 30195612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library.
    Yamagishi Y; Shoji I; Miyagawa S; Kawakami T; Katoh T; Goto Y; Suga H
    Chem Biol; 2011 Dec; 18(12):1562-70. PubMed ID: 22195558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Macrocyclic Peptide Library with a Structurally Constrained Cyclopropane-containing Building Block Leads to Thiol-independent Inhibitors of Phosphoglycerate Mutase.
    Okuma R; Kuwahara T; Yoshikane T; Watanabe M; Dranchak P; Inglese J; Shuto S; Goto Y; Suga H
    Chem Asian J; 2020 Sep; 15(17):2631-2636. PubMed ID: 32633882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Amylase inhibitors from an Indonesian medicinal herb, Phyllanthus urinaria.
    Gunawan-Puteri MD; Kato E; Kawabata J
    J Sci Food Agric; 2012 Feb; 92(3):606-9. PubMed ID: 22095704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the inhibition of two human maltase-glucoamylases catalytic domains by different α-glucosidase inhibitors.
    Ren L; Cao X; Geng P; Bai F; Bai G
    Carbohydr Res; 2011 Dec; 346(17):2688-92. PubMed ID: 22036121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.