These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28262559)

  • 1. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore.
    Herwig L; Rice AJ; Bedbrook CN; Zhang RK; Lignell A; Cahn JKB; Renata H; Dodani SC; Cho I; Cai L; Gradinaru V; Arnold FH
    Cell Chem Biol; 2017 Mar; 24(3):415-425. PubMed ID: 28262559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of a far-red fluorescent rhodopsin.
    McIsaac RS; Engqvist MK; Wannier T; Rosenthal AZ; Herwig L; Flytzanis NC; Imasheva ES; Lanyi JK; Balashov SP; Gradinaru V; Arnold FH
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):13034-9. PubMed ID: 25157169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin.
    Vogel R; Siebert F
    Biopolymers; 2003; 72(3):133-48. PubMed ID: 12722110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward an understanding of the retinal chromophore in rhodopsin mimics.
    Huntress MM; Gozem S; Malley KR; Jailaubekov AE; Vasileiou C; Vengris M; Geiger JH; Borhan B; Schapiro I; Larsen DS; Olivucci M
    J Phys Chem B; 2013 Sep; 117(35):10053-70. PubMed ID: 23971945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal.
    Han M; Groesbeek M; Smith SO; Sakmar TP
    Biochemistry; 1998 Jan; 37(2):538-45. PubMed ID: 9425074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constraints of the 9-methyl group binding pocket of the rhodopsin chromophore probed by 9-halogeno substitution.
    Wang Y; Bovee-Geurts PH; Lugtenburg J; DeGrip WJ
    Biochemistry; 2004 Nov; 43(46):14802-10. PubMed ID: 15544351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy of rhodopsins: insights and approaches.
    Alexiev U; Farrens DL
    Biochim Biophys Acta; 2014 May; 1837(5):694-709. PubMed ID: 24183695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of retinal isomerization to the activation of rhodopsin.
    Patel AB; Crocker E; Eilers M; Hirshfeld A; Sheves M; Smith SO
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10048-53. PubMed ID: 15220479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin: structural basis of molecular physiology.
    Menon ST; Han M; Sakmar TP
    Physiol Rev; 2001 Oct; 81(4):1659-88. PubMed ID: 11581499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging.
    Ai HW; Henderson JN; Remington SJ; Campbell RE
    Biochem J; 2006 Dec; 400(3):531-40. PubMed ID: 16859491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromophore channeling in the G-protein coupled receptor rhodopsin.
    Wang T; Duan Y
    J Am Chem Soc; 2007 Jun; 129(22):6970-1. PubMed ID: 17500517
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.
    Morrow JM; Chang BS
    Biochemistry; 2015 Jul; 54(29):4507-18. PubMed ID: 26098991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An additional methyl group at the 10-position of retinal dramatically slows down the kinetics of the rhodopsin photocascade.
    DeLange F; Bovee-Geurts PH; VanOostrum J; Portier MD; Verdegem PJ; Lugtenburg J; DeGrip WJ
    Biochemistry; 1998 Feb; 37(5):1411-20. PubMed ID: 9477970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on the conformational state of the chromophore group (11-cis-retinal) in rhodopsin by computer molecular simulation methods].
    Fel'dman TB; Kholmurodov KhT; Ostrovskiĭ MA; Khrenova MG; Nemukhin AV
    Biofizika; 2009; 54(4):660-7. PubMed ID: 19795787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.