BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28262560)

  • 1. BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants.
    Lion C; Simon C; Huss B; Blervacq AS; Tirot L; Toybou D; Spriet C; Slomianny C; Guerardel Y; Hawkins S; Biot C
    Cell Chem Biol; 2017 Mar; 24(3):326-338. PubMed ID: 28262560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BLISS: Shining a light on lignification in plants.
    Simon C; Lion C; Huss B; Blervacq AS; Spriet C; Guérardel Y; Biot C; Hawkins S
    Plant Signal Behav; 2017 Aug; 12(8):e1359366. PubMed ID: 28786751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing Lignification Dynamics in Plants with Click Chemistry: Dual Labeling is BLISS!
    Simon C; Spriet C; Hawkins S; Lion C
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A click chemistry strategy for visualization of plant cell wall lignification.
    Tobimatsu Y; Van de Wouwer D; Allen E; Kumpf R; Vanholme B; Boerjan W; Ralph J
    Chem Commun (Camb); 2014 Oct; 50(82):12262-5. PubMed ID: 25180250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One, Two, Three: A Bioorthogonal Triple Labelling Strategy for Studying the Dynamics of Plant Cell Wall Formation In Vivo.
    Simon C; Lion C; Spriet C; Baldacci-Cresp F; Hawkins S; Biot C
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16665-16671. PubMed ID: 30370981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A "Double Click" for Illuminating Plant Cell Walls.
    Tobimatsu Y
    Cell Chem Biol; 2017 Mar; 24(3):246-247. PubMed ID: 28306499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Applications of the Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction.
    Li L; Zhang Z
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27783053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An azide-modified nucleoside for metabolic labeling of DNA.
    Neef AB; Luedtke NW
    Chembiochem; 2014 Apr; 15(6):789-93. PubMed ID: 24644275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Labeling live cells by copper-catalyzed alkyne--azide click chemistry.
    Hong V; Steinmetz NF; Manchester M; Finn MG
    Bioconjug Chem; 2010 Oct; 21(10):1912-6. PubMed ID: 20886827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal-mediated bioorthogonal protein chemistry in living cells.
    Yang M; Li J; Chen PR
    Chem Soc Rev; 2014 Sep; 43(18):6511-26. PubMed ID: 24867400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free in situ imaging of lignification in plant cell walls.
    Schmidt M; Perera P; Schwartzberg AM; Adams PD; Schuck PJ
    J Vis Exp; 2010 Nov; (45):. PubMed ID: 21085100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible Azide-Alkyne "Click" Reactions for Surface Decoration of Glyco-Engineered Cells.
    Gutmann M; Memmel E; Braun AC; Seibel J; Meinel L; Lühmann T
    Chembiochem; 2016 May; 17(9):866-75. PubMed ID: 26818821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a clickable designer monolignol for interrogation of lignification in plant cell walls.
    Bukowski N; Pandey JL; Doyle L; Richard TL; Anderson CT; Zhu Y
    Bioconjug Chem; 2014 Dec; 25(12):2189-96. PubMed ID: 25405515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic lignification in the flax lignified bast fiber1 mutant stem is associated with tissue-specific modifications in gene expression and cell wall composition.
    Chantreau M; Portelette A; Dauwe R; Kiyoto S; Crônier D; Morreel K; Arribat S; Neutelings G; Chabi M; Boerjan W; Yoshinaga A; Mesnard F; Grec S; Chabbert B; Hawkins S
    Plant Cell; 2014 Nov; 26(11):4462-82. PubMed ID: 25381351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. REPRISAL: mapping lignification dynamics using chemistry, data segmentation, and ratiometric analysis.
    Morel O; Lion C; Neutelings G; Stefanov J; Baldacci-Cresp F; Simon C; Biot C; Hawkins S; Spriet C
    Plant Physiol; 2022 Feb; 188(2):816-830. PubMed ID: 34687294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X; Liu P; Zhu L
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Baldacci-Cresp F; Le Roy J; Huss B; Lion C; Créach A; Spriet C; Duponchel L; Biot C; Baucher M; Hawkins S; Neutelings G
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32847109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.