These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28262572)

  • 21. Single-Well Injection-Drift Test to Estimate Groundwater Velocity.
    Paradis C; Van Ee N; Hoss K; Meurer C; Tigar A; Reimus P; Johnson R
    Ground Water; 2022 Jul; 60(4):565-570. PubMed ID: 35156199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction.
    Medici G; West LJ
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43050-43063. PubMed ID: 34125385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system.
    Pavlovskiy I; Selle B
    Ground Water; 2015 Apr; 53 Suppl 1():156-65. PubMed ID: 25178951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interpretation of injection-withdrawal tracer experiments conducted between two wells in a large single fracture.
    Novakowski KS; Bickerton G; Lapcevic P
    J Contam Hydrol; 2004 Sep; 73(1-4):227-47. PubMed ID: 15336796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating contaminant mass discharge: a field comparison of the multilevel point measurement and the integral pumping investigation approaches and their uncertainties.
    Béland-Pelletier C; Fraser M; Barker J; Ptak T
    J Contam Hydrol; 2011 Mar; 122(1-4):63-75. PubMed ID: 21146251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.
    Sanchez-León E; Leven C; Haslauer CP; Cirpka OA
    Ground Water; 2016 Jul; 54(4):498-507. PubMed ID: 26441342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction.
    Goltz MN; Huang J; Close ME; Flintoft MJ; Pang L
    J Contam Hydrol; 2008 Sep; 100(3-4):127-36. PubMed ID: 18674844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fractional flow in fractured chalk; a flow and tracer test revisited.
    Odling NE; West LJ; Hartmann S; Kilpatrick A
    J Contam Hydrol; 2013 Apr; 147():96-111. PubMed ID: 23501945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The site-scale saturated zone flow model for Yucca Mountain: calibration of different conceptual models and their impact on flow paths.
    Zyvoloski G; Kwicklis E; Eddebbarh AA; Arnold B; Faunt C; Robinson BA
    J Contam Hydrol; 2003; 62-63():731-50. PubMed ID: 12714319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Intraborehole Flow on Purging and Sampling Long-Screened or Open Wells.
    Poulsen DL; Cook PG; Simmons CT; McCallum JL; Dogramaci S
    Ground Water; 2019 Mar; 57(2):269-278. PubMed ID: 29752715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An improved technology for monitoring groundwater flow velocity and direction in fractured rock system based on colloidal particles motion.
    Hu F; Huang CS; Han JH; Huang W; Li X; Hou BQ; Akram W; Li L; Liu XH; Chen W; Zhao ZL; Zhan J; Xu LS; Shan H; Li XZ; Han WJ; Yin ZB; Wang ZZ; Xiao TF
    Sci Rep; 2024 Apr; 14(1):7685. PubMed ID: 38561405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-line groundwater velocity probe: laboratory testing and field evaluation.
    Patterson BM; Annable MD; Bekele EB; Furness AJ
    J Contam Hydrol; 2010 Sep; 117(1-4):109-18. PubMed ID: 20716466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple well systems with non-Darcy flow.
    Mijic A; Mathias SA; LaForce TC
    Ground Water; 2013; 51(4):588-96. PubMed ID: 23039097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent dye imaging of the volume sampled by single well forced-gradient tracer tests evaluated in a laboratory-scale aquifer physical model.
    Barns GL; Wilson RD; Thornton SF
    J Contam Hydrol; 2012 Feb; 128(1-4):58-70. PubMed ID: 22192345
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Method to Estimate the Hydraulic Conductivity of the Ground by TRT Analysis.
    Liuzzo Scorpo A; Nordell B; Gehlin S
    Ground Water; 2017 Jan; 55(1):110-118. PubMed ID: 27479510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating water-quality trends in public-supply wells in transient flow systems.
    Jeffrey Starn J; Green CT; Hinkle SR; Bagtzoglou AC; Stolp BJ
    Ground Water; 2014 Sep; 52 Suppl 1(Suppl 1):53-62. PubMed ID: 25039912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada.
    Soltanian MR; Sun A; Dai Z
    Chemosphere; 2017 Jul; 179():379-386. PubMed ID: 28390305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of chlorine-36 technique in determining the age of modern groundwater in the Al-Zulfi province, Saudi Arabia.
    Challan MB
    Isotopes Environ Health Stud; 2016 Jun; 52(3):258-69. PubMed ID: 26269327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Tube Seepage Meter for In Situ Measurement of Seepage Rate and Groundwater Sampling.
    Solder JE; Gilmore TE; Genereux DP; Solomon DK
    Ground Water; 2016 Jul; 54(4):588-95. PubMed ID: 26683886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.