BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 28262607)

  • 1. Biomechanics of the human intervertebral disc: A review of testing techniques and results.
    Newell N; Little JP; Christou A; Adams MA; Adam CJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 May; 69():420-434. PubMed ID: 28262607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.
    Beauchemin PF; Bayly PV; Garbow JR; Schmidt JLS; Okamoto RJ; Chériet F; Périé D
    NMR Biomed; 2018 Oct; 31(10):e3918. PubMed ID: 29727498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Function of the Nucleus Pulposus of the Intervertebral Disc Under High Rates of Loading.
    Newell N; Carpanen D; Evans JH; Pearcy MJ; Masouros SD
    Spine (Phila Pa 1976); 2019 Aug; 44(15):1035-1041. PubMed ID: 31095121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical and Endplate Effects on Nutrient Transport in the Intervertebral Disc.
    Giers MB; Munter BT; Eyster KJ; Ide GD; Newcomb AGUS; Lehrman JN; Belykh E; Byvaltsev VA; Kelly BP; Preul MC; Theodore N
    World Neurosurg; 2017 Mar; 99():395-402. PubMed ID: 28012886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of intervertebral disc damage on the mechanical strength of the annulus fibrosus in the adjacent segment.
    Chow N; Gregory DE
    Spine J; 2023 Dec; 23(12):1935-1940. PubMed ID: 37487934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method.
    Guo LX; Li R; Zhang M
    Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies.
    Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH
    J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanical response of the ovine lumbar anulus fibrosus to uniaxial, biaxial and shear loads.
    Little JP; Pearcy MJ; Tevelen G; Evans JH; Pettet G; Adam CJ
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):146-57. PubMed ID: 20129414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Static Load on the Nucleus Pulposus of Rabbit Intervertebral Disc Motion Segment in Ex vivo Organ Culture.
    Zhu LG; Feng MS; Zhan JW; Zhang P; Yu J
    Chin Med J (Engl); 2016 Oct; 129(19):2338-46. PubMed ID: 27647194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanobiology of annulus fibrosus and nucleus pulposus cells in intervertebral discs.
    Molladavoodi S; McMorran J; Gregory D
    Cell Tissue Res; 2020 Mar; 379(3):429-444. PubMed ID: 31844969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs.
    Maria Luisa R; Luca C
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32601688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content.
    Gu WY; Mao XG; Foster RJ; Weidenbaum M; Mow VC; Rawlins BA
    Spine (Phila Pa 1976); 1999 Dec; 24(23):2449-55. PubMed ID: 10626306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prenatal muscle forces are necessary for vertebral segmentation and disc structure, but not for notochord involution in mice.
    Levillain A; Ahmed S; Kaimaki DM; Schuler S; Barros S; Labonte D; Iatridis JC; Nowlan NC
    Eur Cell Mater; 2021 May; 41():558-575. PubMed ID: 34021906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of compressive loading rate on annulus fibrosus strength following endplate fracture.
    McMorran JG; Gregory DE
    Med Eng Phys; 2021 Jul; 93():17-26. PubMed ID: 34154771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamellar and fibre bundle mechanics of the annulus fibrosus in bovine intervertebral disc.
    Vergari C; Mansfield J; Meakin JR; Winlove PC
    Acta Biomater; 2016 Jun; 37():14-20. PubMed ID: 27063647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics.
    Desmoulin GT; Pradhan V; Milner TE
    Spine (Phila Pa 1976); 2020 Apr; 45(8):E457-E464. PubMed ID: 31651681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biology behind the human intervertebral disc and its endplates.
    Tomaszewski KA; Saganiak K; Gładysz T; Walocha JA
    Folia Morphol (Warsz); 2015; 74(2):157-68. PubMed ID: 26050801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering.
    Wang W; Zhou C; Guo R; Cha T; Li G
    J Mech Behav Biomed Mater; 2021 Oct; 122():104661. PubMed ID: 34252706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability.
    Borem R; Madeline A; Walters J; Mayo H; Gill S; Mercuri J
    Acta Biomater; 2017 Aug; 58():254-268. PubMed ID: 28587986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.