These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28262696)

  • 1. Cooperation in carbon source degradation shapes spatial self-organization of microbial consortia on hydrated surfaces.
    Tecon R; Or D
    Sci Rep; 2017 Mar; 7():43726. PubMed ID: 28262696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.
    Wang G; Or D
    Sci Rep; 2014 Oct; 4():6757. PubMed ID: 25343307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type IV Pilus Shapes a 'Bubble-Burst' Pattern Opposing Spatial Intermixing of Two Interacting Bacterial Populations.
    Wang M; Chen X; Ma Y; Tang YQ; Johnson DR; Nie Y; Wu XL
    Microbiol Spectr; 2022 Feb; 10(1):e0194421. PubMed ID: 35171019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It.
    Morlett-Chavez JA; Ascacio-Martinez JA; Haskins WE; Acuña-Askar K; Barrera-Saldaña HA
    Pol J Microbiol; 2017 Jul; 66(2):189-199. PubMed ID: 28735314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks.
    Borer B; Tecon R; Or D
    Nat Commun; 2018 Feb; 9(1):769. PubMed ID: 29472536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil.
    Milcic-Terzic J; Lopez-Vidal Y; Vrvic MM; Saval S
    Bioresour Technol; 2001 May; 78(1):47-54. PubMed ID: 11265787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of quasi-natural Pseudomonas putida strains for toluene metabolism through an ortho-cleavage degradation pathway.
    Panke S; Sánchez-Romero JM; de Lorenzo V
    Appl Environ Microbiol; 1998 Feb; 64(2):748-51. PubMed ID: 9464417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Spatial Distribution Patterns by Biofilm Cells.
    Haagensen JA; Hansen SK; Christensen BB; Pamp SJ; Molin S
    Appl Environ Microbiol; 2015 Sep; 81(18):6120-8. PubMed ID: 26116674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of microbial cocktails for BTEX biodegradation.
    Nagarajan K; Loh KC
    Biodegradation; 2015 Feb; 26(1):51-63. PubMed ID: 25331771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation.
    Meckenstock RU; Morasch B; Warthmann R; Schink B; Annweiler E; Michaelis W; Richnow HH
    Environ Microbiol; 1999 Oct; 1(5):409-14. PubMed ID: 11207760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of 16S-rRNA to investigate microbial population dynamics during biodegradation of toluene and phenol by a binary culture.
    Rogers JB; DuTeau NM; Reardon KF
    Biotechnol Bioeng; 2000 Nov; 70(4):436-45. PubMed ID: 11005926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.
    Grösbacher M; Eckert D; Cirpka OA; Griebler C
    Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock.
    Huertas MJ; Duque E; Marqués S; Ramos JL
    Appl Environ Microbiol; 1998 Jan; 64(1):38-42. PubMed ID: 9435060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.
    Piskonen R; Nyyssönen M; Itävaara M
    Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flow cell simulating a subsurface rock fracture for investigations of groundwater-derived biofilms.
    Starek M; Kolev KI; Berthiaume L; Yeung CW; Sleep BE; Wolfaardt GM; Hausner M
    Int Microbiol; 2011 Sep; 14(3):163-71. PubMed ID: 22101414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation.
    Díaz LF; Muñoz R; Bordel S; Villaverde S
    Biodegradation; 2008 Apr; 19(2):197-208. PubMed ID: 17487552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of external voltage on Pseudomonas putida F1 in a bio electrochemical cell using toluene as sole carbon and energy source.
    Friman H; Schechter A; Nitzan Y; Cahan R
    Microbiology (Reading); 2012 Feb; 158(Pt 2):414-423. PubMed ID: 22096152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclodextrin-enhanced degradation of toluene and p-toluic acid by Pseudomonas putida.
    Schwartz A; Bar R
    Appl Environ Microbiol; 1995 Jul; 61(7):2727-31. PubMed ID: 7618884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas putida as the dominant toluene-degrading bacterial species during air decontamination by biofiltration.
    Roy S; Gendron J; Delhoménie MC; Bibeau L; Heitz M; Brzezinski R
    Appl Microbiol Biotechnol; 2003 May; 61(4):366-73. PubMed ID: 12743767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.
    Bacosa HP; Suto K; Inoue C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(8):835-46. PubMed ID: 23485232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.