These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823 [TBL] [Abstract][Full Text] [Related]
3. Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries. Jin Y; Zou L; Liu L; Engelhard MH; Patel RL; Nie Z; Han KS; Shao Y; Wang C; Zhu J; Pan H; Liu J Adv Mater; 2019 Jul; 31(29):e1900567. PubMed ID: 31157468 [TBL] [Abstract][Full Text] [Related]
4. A High-Energy and Long-Life Aqueous Zn/Birnessite Battery via Reversible Water and Zn Hou Z; Dong M; Xiong Y; Zhang X; Ao H; Liu M; Zhu Y; Qian Y Small; 2020 Jul; 16(26):e2001228. PubMed ID: 32510836 [TBL] [Abstract][Full Text] [Related]
5. Layered manganese dioxide nanoflowers with Cu Long F; Xiang Y; Yang S; Li Y; Du H; Liu Y; Wu X; Wu X J Colloid Interface Sci; 2022 Jun; 616():101-109. PubMed ID: 35193050 [TBL] [Abstract][Full Text] [Related]
6. Mo-Pre-Intercalated MnO Wang Z; Han K; Wan Q; Fang Y; Qu X; Li P ACS Appl Mater Interfaces; 2023 Jan; 15(1):859-869. PubMed ID: 36579427 [TBL] [Abstract][Full Text] [Related]
7. Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries. Lin B; Zhu X; Fang L; Liu X; Li S; Zhai T; Xue L; Guo Q; Xu J; Xia H Adv Mater; 2019 Jun; 31(24):e1900060. PubMed ID: 31045288 [TBL] [Abstract][Full Text] [Related]
8. The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. Nam KW; Kim S; Lee S; Salama M; Shterenberg I; Gofer Y; Kim JS; Yang E; Park CS; Kim JS; Lee SS; Chang WS; Doo SG; Jo YN; Jung Y; Aurbach D; Choi JW Nano Lett; 2015 Jun; 15(6):4071-9. PubMed ID: 25985060 [TBL] [Abstract][Full Text] [Related]
9. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Lee B; Yoon CS; Lee HR; Chung KY; Cho BW; Oh SH Sci Rep; 2014 Aug; 4():6066. PubMed ID: 25317571 [TBL] [Abstract][Full Text] [Related]
10. Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries. Zhai XZ; Qu J; Hao SM; Jing YQ; Chang W; Wang J; Li W; Abdelkrim Y; Yuan H; Yu ZZ Nanomicro Lett; 2020 Feb; 12(1):56. PubMed ID: 34138296 [TBL] [Abstract][Full Text] [Related]
11. Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof. Oberholzer P; Tervoort E; Bouzid A; Pasquarello A; Kundu D ACS Appl Mater Interfaces; 2019 Jan; 11(1):674-682. PubMed ID: 30521309 [TBL] [Abstract][Full Text] [Related]
12. Layered Ca Sun T; Nian Q; Zheng S; Shi J; Tao Z Small; 2020 Apr; 16(17):e2000597. PubMed ID: 32249537 [TBL] [Abstract][Full Text] [Related]
13. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries. Guo X; Li J; Jin X; Han Y; Lin Y; Lei Z; Wang S; Qin L; Jiao S; Cao R Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29734746 [TBL] [Abstract][Full Text] [Related]
14. Electrolyte Effect on the Electrochemical Performance of Mild Aqueous Zinc-Electrolytic Manganese Dioxide Batteries. Pan H; Ellis JF; Li X; Nie Z; Chang HJ; Reed D ACS Appl Mater Interfaces; 2019 Oct; 11(41):37524-37530. PubMed ID: 31525016 [TBL] [Abstract][Full Text] [Related]
15. Suppressed Layered-to-Spinel Phase Transition in δ-MnO Qiu C; Liu J; Liu H; Zhu X; Xue L; Li S; Ni M; Zhao Y; Wang T; Savilov SV; Aldoshin SM; Xia H Small Methods; 2022 Dec; 6(12):e2201142. PubMed ID: 36333209 [TBL] [Abstract][Full Text] [Related]
16. A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. Guo S; Yu H; Jian Z; Liu P; Zhu Y; Guo X; Chen M; Ishida M; Zhou H ChemSusChem; 2014 Aug; 7(8):2115-9. PubMed ID: 24919424 [TBL] [Abstract][Full Text] [Related]
17. Homogeneous regulation of arranged polymorphic manganese dioxide nanocrystals as cathode materials for high-performance zinc-ion batteries. Jiang W; Wang W; Shi H; Hu R; Hong J; Tong Y; Ma J; Jing Liang C; Peng J; Xu Z J Colloid Interface Sci; 2023 Oct; 647():124-133. PubMed ID: 37247476 [TBL] [Abstract][Full Text] [Related]
18. Activating the Stepwise Intercalation-Conversion Reaction of Layered Copper Sulfide toward Extremely High Capacity Zinc-Metal-Free Anodes for Rocking-Chair Zinc-Ion Batteries. Lv Z; Wang B; Ye M; Zhang Y; Yang Y; Li CC ACS Appl Mater Interfaces; 2022 Jan; 14(1):1126-1137. PubMed ID: 34933560 [TBL] [Abstract][Full Text] [Related]
19. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Xia C; Guo J; Li P; Zhang X; Alshareef HN Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667 [TBL] [Abstract][Full Text] [Related]
20. Unlocking the Capacity of Bismuth Oxide by a Redox Mediator Strategy for High-Performance Aqueous Zn-Ion Batteries. Liu N; Liu Z; Li J; Ge Z; Fan L; Zhao C; Guo Z; Chen A; Lu X; Zhang Y; Zhang N; Zhang X ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37903333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]