BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 28262747)

  • 1. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development.
    Tang PM; Zhou S; Meng XM; Wang QM; Li CJ; Lian GY; Huang XR; Tang YJ; Guan XY; Yan BP; To KF; Lan HY
    Nat Commun; 2017 Mar; 8():14677. PubMed ID: 28262747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Levels of Control Determine How E4bp4/Nfil3 Regulates NK Cell Development.
    Kostrzewski T; Borg AJ; Meng Y; Filipovic I; Male V; Wack A; DiMaggio PA; Brady HJM
    J Immunol; 2018 Feb; 200(4):1370-1381. PubMed ID: 29311361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells.
    Trotta R; Dal Col J; Yu J; Ciarlariello D; Thomas B; Zhang X; Allard J; Wei M; Mao H; Byrd JC; Perrotti D; Caligiuri MA
    J Immunol; 2008 Sep; 181(6):3784-92. PubMed ID: 18768831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells.
    Wang QM; Tang PM; Lian GY; Li C; Li J; Huang XR; To KF; Lan HY
    Cancer Immunol Res; 2018 Aug; 6(8):965-977. PubMed ID: 29915022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development.
    Gascoyne DM; Long E; Veiga-Fernandes H; de Boer J; Williams O; Seddon B; Coles M; Kioussis D; Brady HJ
    Nat Immunol; 2009 Oct; 10(10):1118-24. PubMed ID: 19749763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDK1 orchestrates early NK cell development through induction of E4BP4 expression and maintenance of IL-15 responsiveness.
    Yang M; Li D; Chang Z; Yang Z; Tian Z; Dong Z
    J Exp Med; 2015 Feb; 212(2):253-65. PubMed ID: 25624444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development.
    Crotta S; Gkioka A; Male V; Duarte JH; Davidson S; Nisoli I; Brady HJ; Wack A
    J Immunol; 2014 Mar; 192(6):2677-88. PubMed ID: 24534532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E.
    Lai W; Tang Y; Huang XR; Ming-Kuen Tang P; Xu A; Szalai AJ; Lou TQ; Lan HY
    Kidney Int; 2016 Sep; 90(3):610-26. PubMed ID: 27470679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression.
    Male V; Nisoli I; Kostrzewski T; Allan DS; Carlyle JR; Lord GM; Wack A; Brady HJ
    J Exp Med; 2014 Apr; 211(4):635-42. PubMed ID: 24663216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-carried nanodrug (SCND-SIS3): A targeted therapy for lung cancer with superior biocompatibility and immune boosting effects.
    Lian GY; Wan Y; Mak TS; Wang QM; Zhang J; Chen J; Wang ZY; Li M; Tang PM; Huang XR; Lee CS; Yu XQ; Lan HY
    Biomaterials; 2022 Sep; 288():121730. PubMed ID: 35995622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of Asiatic Acid and Naringenin Modulates NK Cell Anti-cancer Immunity by Rebalancing Smad3/Smad7 Signaling.
    Lian GY; Wang QM; Tang PM; Zhou S; Huang XR; Lan HY
    Mol Ther; 2018 Sep; 26(9):2255-2266. PubMed ID: 30017880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupting Smad3 potentiates immunostimulatory function of NK cells against lung carcinoma by promoting GM-CSF production.
    Lian GY; Wang QM; Mak TS; Huang XR; Yu XQ; Lan HY
    Cell Mol Life Sci; 2024 Jun; 81(1):262. PubMed ID: 38878186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression.
    Jinnin M; Ihn H; Tamaki K
    Mol Pharmacol; 2006 Feb; 69(2):597-607. PubMed ID: 16288083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor-β1 mediates psoriasis-like lesions via a Smad3-dependent mechanism in mice.
    Zhang Y; Meng XM; Huang XR; Wang XJ; Yang L; Lan HY
    Clin Exp Pharmacol Physiol; 2014 Nov; 41(11):921-32. PubMed ID: 25132073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential requirement for Nfil3 during NK cell development.
    Seillet C; Huntington ND; Gangatirkar P; Axelsson E; Minnich M; Brady HJ; Busslinger M; Smyth MJ; Belz GT; Carotta S
    J Immunol; 2014 Mar; 192(6):2667-76. PubMed ID: 24532575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yap1 promotes the survival and self-renewal of breast tumor initiating cells via inhibiting Smad3 signaling.
    Sun JG; Chen XW; Zhang LP; Wang J; Diehn M
    Oncotarget; 2016 Mar; 7(9):9692-706. PubMed ID: 26695440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo.
    Kamizono S; Duncan GS; Seidel MG; Morimoto A; Hamada K; Grosveld G; Akashi K; Lind EF; Haight JP; Ohashi PS; Look AT; Mak TW
    J Exp Med; 2009 Dec; 206(13):2977-86. PubMed ID: 19995955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PBX1 promotes development of natural killer cells by binding directly to the Nfil3 promoter.
    Xu X; Zhou Y; Fu B; Zhang J; Dong Z; Zhang X; Shen N; Sun R; Tian Z; Wei H
    FASEB J; 2020 May; 34(5):6479-6492. PubMed ID: 32190943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of transforming growth factor β1/Smad3 signaling decreases hypoxia-inducible factor-1α protein stability by inducing prolyl hydroxylase 2 expression in human periodontal ligament cells.
    Watanabe T; Yasue A; Tanaka E
    J Periodontol; 2013 Sep; 84(9):1346-52. PubMed ID: 23088526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression.
    Li K; Zhang TT; Wang F; Cui B; Zhao CX; Yu JJ; Lv XX; Zhang XW; Yang ZN; Huang B; Li X; Hua F; Hu ZW
    Oncogene; 2018 May; 37(22):2967-2981. PubMed ID: 29520103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.