These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 28262797)
1. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Owusu KA; Qu L; Li J; Wang Z; Zhao K; Yang C; Hercule KM; Lin C; Shi C; Wei Q; Zhou L; Mai L Nat Commun; 2017 Mar; 8():14264. PubMed ID: 28262797 [TBL] [Abstract][Full Text] [Related]
2. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870 [TBL] [Abstract][Full Text] [Related]
3. Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. Yan J; Wang Q; Wei T; Jiang L; Zhang M; Jing X; Fan Z ACS Nano; 2014 May; 8(5):4720-9. PubMed ID: 24730514 [TBL] [Abstract][Full Text] [Related]
4. Ag-modified Fe Guan Y; Ji P; Wan J; Zhang D; Wang Z; Tian H; Hu C; Hu B; Tang Q; Xi Y Nanotechnology; 2020 Mar; 31(12):125405. PubMed ID: 31751972 [TBL] [Abstract][Full Text] [Related]
5. Novel Dual-Ion Hybrid Supercapacitor Based on a NiCo Li Y; Tang F; Wang R; Wang C; Liu J ACS Appl Mater Interfaces; 2016 Nov; 8(44):30232-30238. PubMed ID: 27797167 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric All-Metal-Oxide Supercapacitor with Superb Cycle Performance. Yang C; Sun M; Lu H Chemistry; 2018 Apr; 24(23):6169-6177. PubMed ID: 29476568 [TBL] [Abstract][Full Text] [Related]
7. Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor. Chen S; Yang G; Zhao X; Wang N; Luo T; Chen X; Wu T; Jiang S; van Aken PA; Qu S; Li T; Du L; Zhang J; Wang H; Wang H Front Chem; 2020; 8():663. PubMed ID: 33195003 [TBL] [Abstract][Full Text] [Related]
8. Alternating Voltage Introduced NiCo Double Hydroxide Layered Nanoflakes for an Asymmetric Supercapacitor. Jing M; Hou H; Banks CE; Yang Y; Zhang Y; Ji X ACS Appl Mater Interfaces; 2015 Oct; 7(41):22741-4. PubMed ID: 26435064 [TBL] [Abstract][Full Text] [Related]
9. Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. Li M; Pan F; Choo ES; Lv Y; Chen Y; Xue J ACS Appl Mater Interfaces; 2016 Mar; 8(11):6972-81. PubMed ID: 26926985 [TBL] [Abstract][Full Text] [Related]
10. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO Sheng L; Jiang L; Wei T; Fan Z Small; 2016 Oct; 12(37):5217-5227. PubMed ID: 27483052 [TBL] [Abstract][Full Text] [Related]
11. In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor. Sun F; Liu X; Wu HB; Wang L; Gao J; Li H; Lu Y Nano Lett; 2018 Jun; 18(6):3368-3376. PubMed ID: 29708761 [TBL] [Abstract][Full Text] [Related]
12. High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors. Fan Z; Zhu J; Sun X; Cheng Z; Liu Y; Wang Y ACS Appl Mater Interfaces; 2017 Jul; 9(26):21763-21772. PubMed ID: 28605894 [TBL] [Abstract][Full Text] [Related]
13. Investigation of Voltage Range and Self-Discharge in Aqueous Zinc-Ion Hybrid Supercapacitors. Yang J; Bissett MA; Dryfe RAW ChemSusChem; 2021 Apr; 14(7):1700-1709. PubMed ID: 33480141 [TBL] [Abstract][Full Text] [Related]
14. Wire-Shaped 3D-Hybrid Supercapacitors as Substitutes for Batteries. Kang KN; Ramadoss A; Min JW; Yoon JC; Lee D; Kang SJ; Jang JH Nanomicro Lett; 2020 Jan; 12(1):28. PubMed ID: 34138068 [TBL] [Abstract][Full Text] [Related]
15. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co Zhang C; Wei J; Chen L; Tang S; Deng M; Du Y Nanoscale; 2017 Oct; 9(40):15423-15433. PubMed ID: 28975952 [TBL] [Abstract][Full Text] [Related]
16. 2-Methylimidazole-Derived Ni-Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. Wang T; Zhang S; Yan X; Lyu M; Wang L; Bell J; Wang H ACS Appl Mater Interfaces; 2017 May; 9(18):15510-15524. PubMed ID: 28430411 [TBL] [Abstract][Full Text] [Related]
17. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors. Harilal M; Vidyadharan B; Misnon II; Anilkumar GM; Lowe A; Ismail J; Yusoff MM; Jose R ACS Appl Mater Interfaces; 2017 Mar; 9(12):10730-10742. PubMed ID: 28266837 [TBL] [Abstract][Full Text] [Related]
18. Electrostatic-Induced Assembly of Graphene-Encapsulated Carbon@Nickel-Aluminum Layered Double Hydroxide Core-Shell Spheres Hybrid Structure for High-Energy and High-Power-Density Asymmetric Supercapacitor. Wu S; Hui KS; Hui KN; Kim KH ACS Appl Mater Interfaces; 2017 Jan; 9(2):1395-1406. PubMed ID: 27936540 [TBL] [Abstract][Full Text] [Related]
19. Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density. Sarkar S; Howli P; Das B; Das NS; Samanta M; Das GC; Chattopadhyay KK ACS Appl Mater Interfaces; 2017 Jul; 9(27):22652-22664. PubMed ID: 28616963 [TBL] [Abstract][Full Text] [Related]
20. Holey graphene frameworks for highly efficient capacitive energy storage. Xu Y; Lin Z; Zhong X; Huang X; Weiss NO; Huang Y; Duan X Nat Commun; 2014 Aug; 5():4554. PubMed ID: 25105994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]