BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28262801)

  • 1. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries.
    Mao Y; Li G; Guo Y; Li Z; Liang C; Peng X; Lin Z
    Nat Commun; 2017 Mar; 8():14628. PubMed ID: 28262801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries.
    Liu Y; Li G; Fu J; Chen Z; Peng X
    Angew Chem Int Ed Engl; 2017 May; 56(22):6176-6180. PubMed ID: 28326659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium-Sulfur Batteries.
    Xu F; Yang S; Jiang G; Ye Q; Wei B; Wang H
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37731-37738. PubMed ID: 28990391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities.
    Pan H; Cheng Z; Zhong H; Wang R; Li X
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Conversion of Metal-Organic Frameworks into VO
    Seo SD; Yu S; Park S; Kim DW
    Small; 2020 Nov; 16(47):e2004806. PubMed ID: 33136344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries.
    Zhao Q; Zhu Q; Miao J; Zhang P; Xu B
    Nanoscale; 2019 Apr; 11(17):8442-8448. PubMed ID: 30985850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced graphene oxide coated porous carbon-sulfur nanofiber as a flexible paper electrode for lithium-sulfur batteries.
    Chu RX; Lin J; Wu CQ; Zheng J; Chen YL; Zhang J; Han RH; Zhang Y; Guo H
    Nanoscale; 2017 Jul; 9(26):9129-9138. PubMed ID: 28644506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage.
    Zhang L; Huang Y; Zhang Y; Fan W; Liu T
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27823-30. PubMed ID: 26619894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT.
    Liu Y; Li G; Guo Y; Ying Y; Peng X
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14043-14050. PubMed ID: 28387503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li-S Battery Electrodes.
    Liu B; Bo R; Taheri M; Di Bernardo I; Motta N; Chen H; Tsuzuki T; Yu G; Tricoli A
    Nano Lett; 2019 Jul; 19(7):4391-4399. PubMed ID: 31246030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Graphene-Carbon Nanotube-Ni Hierarchical Architecture as a Polysulfide Trap for Lithium-Sulfur Batteries.
    Gnana Kumar G; Chung SH; Raj Kumar T; Manthiram A
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20627-20634. PubMed ID: 29799717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.
    Chen M; Jiang S; Huang C; Xia J; Wang X; Xiang K; Zeng P; Zhang Y; Jamil S
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13562-13572. PubMed ID: 29616796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries.
    Lai C; Wu Z; Gu X; Wang C; Xi K; Kumar RV; Zhang S
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):23885-92. PubMed ID: 26470838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailored porous framework materials for advancing lithium-sulfur batteries.
    Liu B; Thoi VS
    Chem Commun (Camb); 2022 Mar; 58(25):4005-4015. PubMed ID: 35258050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.
    Sun L; Wang D; Luo Y; Wang K; Kong W; Wu Y; Zhang L; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    ACS Nano; 2016 Jan; 10(1):1300-8. PubMed ID: 26695394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistically Enhanced Interfacial Interaction to Polysulfide via N,O Dual-Doped Highly Porous Carbon Microrods for Advanced Lithium-Sulfur Batteries.
    Wang N; Xu Z; Xu X; Liao T; Tang B; Bai Z; Dou S
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13573-13580. PubMed ID: 29616547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for High-Performance Lithium-Sulfur Batteries.
    Wang H; Zhang W; Liu H; Guo Z
    Angew Chem Int Ed Engl; 2016 Mar; 55(12):3992-6. PubMed ID: 26889652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries.
    Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L
    ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-Sulfur Batteries.
    Milroy C; Manthiram A
    Adv Mater; 2016 Nov; 28(44):9744-9751. PubMed ID: 27717072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.