These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28262801)

  • 41. Construction of three-dimensional ordered porous carbon bulk networks for high performance lithium-sulfur batteries.
    Gu H; Zhang R; Wang P; Xie S; Niu C; Wang H
    J Colloid Interface Sci; 2019 Jan; 533():445-451. PubMed ID: 30172770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel Conductive Metal-Organic Framework for a High-Performance Lithium-Sulfur Battery Host: 2D Cu-Benzenehexathial (BHT).
    Li F; Zhang X; Liu X; Zhao M
    ACS Appl Mater Interfaces; 2018 May; 10(17):15012-15020. PubMed ID: 29658262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries.
    Hua W; Yang Z; Nie H; Li Z; Yang J; Guo Z; Ruan C; Chen X; Huang S
    ACS Nano; 2017 Feb; 11(2):2209-2218. PubMed ID: 28146627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries.
    Chen M; Jiang S; Huang C; Wang X; Cai S; Xiang K; Zhang Y; Xue J
    ChemSusChem; 2017 Apr; 10(8):1803-1812. PubMed ID: 28236432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.
    Xu F; Jin S; Zhong H; Wu D; Yang X; Chen X; Wei H; Fu R; Jiang D
    Sci Rep; 2015 Feb; 5():8225. PubMed ID: 25650133
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-Dimensional Conductive Metal-Organic Frameworks as Highly Efficient Electrocatalysts for Lithium-Sulfur Batteries.
    Wang J; Li F; Liu Z; Dai Z; Gao S; Zhao M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61205-61214. PubMed ID: 34918904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Controlled Synthesis of Sulfur-Rich Polymeric Selenium Sulfides as Promising Electrode Materials for Long-Life, High-Rate Lithium Metal Batteries.
    Dong P; Han KS; Lee JI; Zhang X; Cha Y; Song MK
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29565-29573. PubMed ID: 30091586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Situ Formation of Co
    Zeng P; Li J; Ye M; Zhuo K; Fang Z
    Chemistry; 2017 Jul; 23(40):9517-9524. PubMed ID: 28370522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance.
    Li Z; Yin L
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4029-38. PubMed ID: 25625174
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries.
    Hong XJ; Tan TX; Guo YK; Tang XY; Wang JY; Qin W; Cai YP
    Nanoscale; 2018 Feb; 10(6):2774-2780. PubMed ID: 29323375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries.
    Zhao Q; Zhu Q; Miao J; Guan Z; Liu H; Chen R; An Y; Wu F; Xu B
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10882-10889. PubMed ID: 29533653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
    Jin L; Huang X; Zeng G; Wu H; Morbidelli M
    Sci Rep; 2016 Sep; 6():32800. PubMed ID: 27600885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CeF
    Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries.
    Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG
    J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.
    Li D; Han F; Wang S; Cheng F; Sun Q; Li WC
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2208-13. PubMed ID: 23452385
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electron-State Confinement of Polysulfides for Highly Stable Sodium-Sulfur Batteries.
    Ye C; Jiao Y; Chao D; Ling T; Shan J; Zhang B; Gu Q; Davey K; Wang H; Qiao SZ
    Adv Mater; 2020 Mar; 32(12):e1907557. PubMed ID: 32058658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scalable Approach To Construct Free-Standing and Flexible Carbon Networks for Lithium-Sulfur Battery.
    Li M; Wahyudi W; Kumar P; Wu F; Yang X; Li H; Li LJ; Ming J
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8047-8054. PubMed ID: 28221020
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.
    Kim HM; Hwang JY; Manthiram A; Sun YK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications.
    Li WJ; Liu J; Sun ZH; Liu TF; Lü J; Gao SY; He C; Cao R; Luo JH
    Nat Commun; 2016 Jun; 7():11830. PubMed ID: 27282348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.