These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28262820)

  • 1. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations.
    Giddey AD; de Kock E; Nakedi KC; Garnett S; Nel AJ; Soares NC; Blackburn JM
    Sci Rep; 2017 Mar; 7():43858. PubMed ID: 28262820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin.
    Hermann C; Giddey AD; Nel AJM; Soares NC; Blackburn JM
    J Proteomics; 2019 Jan; 191():166-179. PubMed ID: 29466714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global proteome and phosphoproteome dynamics indicate novel mechanisms of vitamin C induced dormancy in Mycobacterium smegmatis.
    Albeldas C; Ganief N; Calder B; Nakedi KC; Garnett S; Nel AJM; Blackburn JM; Soares NC
    J Proteomics; 2018 May; 180():1-10. PubMed ID: 29038038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Phenotypic Rifampicin Tolerance in Mycobacterium tuberculosis Beijing Genotype Strain B0/W148 Revealed by Proteomics.
    de Keijzer J; Mulder A; de Beer J; de Ru AH; van Veelen PA; van Soolingen D
    J Proteome Res; 2016 Apr; 15(4):1194-204. PubMed ID: 26930559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Quantitative proteomics analysis of ClpS-mediated rifampicin resistance in Mycobacterium].
    Adilijiang G; Feng S; Mi K; Deng H
    Sheng Wu Gong Cheng Xue Bao; 2014 Jul; 30(7):1115-27. PubMed ID: 25345012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinically relevant mutations in mycobacterial LepA cause rifampicin-specific phenotypic resistance.
    Wang BW; Zhu JH; Javid B
    Sci Rep; 2020 May; 10(1):8402. PubMed ID: 32439911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique Mode of Cell Division by the Mycobacterial Genetic Resister Clones Emerging
    Jakkala K; Paul A; Pradhan A; Nair RR; Sharan D; Swaminath S; Ajitkumar P
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary phase induced alterations in mycobacterial RNA polymerase assembly: A cue to its phenotypic resistance towards rifampicin.
    Mukherjee R; Chatterji D
    Biochem Biophys Res Commun; 2008 May; 369(3):899-904. PubMed ID: 18328810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The K+ uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in Mycobacterium smegmatis.
    Castañeda-García A; Do TT; Blázquez J
    J Antimicrob Chemother; 2011 Jul; 66(7):1489-98. PubMed ID: 21613307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-mycobacterial activities of synthetic cationic α-helical peptides and their synergism with rifampicin.
    Khara JS; Wang Y; Ke XY; Liu S; Newton SM; Langford PR; Yang YY; Ee PL
    Biomaterials; 2014 Feb; 35(6):2032-8. PubMed ID: 24314557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Establishment and drug susceptibility test of isoniazid resistant Mycobacterium smegmatis].
    Jia PP; Zhao LL; Li XY; Zhang Q; Liu ZL; Wang X; Yu LY; Zhao LX; Cen S
    Yao Xue Xue Bao; 2011 Apr; 46(4):377-82. PubMed ID: 21751489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADP-ribosylation as an intermediate step in inactivation of rifampin by a mycobacterial gene.
    Quan S; Imai T; Mikami Y; Yazawa K; Dabbs ER; Morisaki N; Iwasaki S; Hashimoto Y; Furihata K
    Antimicrob Agents Chemother; 1999 Jan; 43(1):181-4. PubMed ID: 9869590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of an RNA polymerase interacting protein, MsRbpA, from Mycobacterium smegmatis in phenotypic tolerance to rifampicin.
    Dey A; Verma AK; Chatterji D
    Microbiology (Reading); 2010 Mar; 156(Pt 3):873-883. PubMed ID: 19926651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of ADP-ribosylated rifampicin and its metabolite: intermediates of rifampicin-ribosylation by Mycobacterium smegmatis DSM43756.
    Morisaki N; Hashimoto Y; Furihata K; Imai T; Watanabe K; Mikami Y; Yazawa K; Ando A; Nagata Y; Dabbs ER
    J Antibiot (Tokyo); 2000 Mar; 53(3):269-75. PubMed ID: 10819298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis.
    Liu H; Yang M; He ZG
    Sci Rep; 2016 Jun; 6():27489. PubMed ID: 27271013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Wag31 protein interacts with AccA3 and coordinates cell wall lipid permeability and lipophilic drug resistance in Mycobacterium smegmatis.
    Xu WX; Zhang L; Mai JT; Peng RC; Yang EZ; Peng C; Wang HH
    Biochem Biophys Res Commun; 2014 Jun; 448(3):255-60. PubMed ID: 24792177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Wall Proteomics Reveal Phenotypic Adaption of Drug-Resistant
    Giddey AD; Ganief TA; Ganief N; Koch A; Warner DF; Soares NC; Blackburn JM
    Front Med (Lausanne); 2021; 8():723667. PubMed ID: 34676224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-MS based assay to measure intracellular compound levels in Mycobacterium smegmatis: linking compound levels to cellular potency.
    Bhat J; Narayan A; Venkatraman J; Chatterji M
    J Microbiol Methods; 2013 Aug; 94(2):152-158. PubMed ID: 23747411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance.
    Javid B; Sorrentino F; Toosky M; Zheng W; Pinkham JT; Jain N; Pan M; Deighan P; Rubin EJ
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):1132-7. PubMed ID: 24395793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a new intermediate in the ribosylative inactivation pathway of rifampin by Mycobacterium smegmatis.
    Imai T; Watanabe K; Mikami Y; Yazawa K; Ando A; Nagata Y; Morisaki N; Hashimoto Y; Furihata K; Dabbs ER
    Microb Drug Resist; 1999; 5(4):259-64. PubMed ID: 10647083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.