These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28262894)

  • 1. In silico environmental chemical science: properties and processes from statistical and computational modelling.
    Tratnyek PG; Bylaska EJ; Weber EJ
    Environ Sci Process Impacts; 2017 Mar; 19(3):188-202. PubMed ID: 28262894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How in silico and QSAR approaches can increase confidence in environmental hazard and risk assessment.
    Thomas PC; Bicherel P; Bauer FJ
    Integr Environ Assess Manag; 2019 Jan; 15(1):40-50. PubMed ID: 30447098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning.
    Zang Q; Mansouri K; Williams AJ; Judson RS; Allen DG; Casey WM; Kleinstreuer NC
    J Chem Inf Model; 2017 Jan; 57(1):36-49. PubMed ID: 28006899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSARs for PBPK modelling of environmental contaminants.
    Peyret T; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR Methods.
    Gini G
    Methods Mol Biol; 2016; 1425():1-20. PubMed ID: 27311459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.
    Zhang Q; Bhattacharya S; Andersen ME; Conolly RB
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):253-76. PubMed ID: 20574901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehension of drug toxicity: software and databases.
    Toropov AA; Toropova AP; Raska I; Leszczynska D; Leszczynski J
    Comput Biol Med; 2014 Feb; 45():20-5. PubMed ID: 24480159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of acute mammalian toxicity from QSARs and interspecies correlations.
    Devillers J; Devillers H
    SAR QSAR Environ Res; 2009 Jul; 20(5-6):467-500. PubMed ID: 19916110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationships for chemical reductions of organic contaminants.
    Tratnyek PG; Weber EJ; Schwarzenbach RP
    Environ Toxicol Chem; 2003 Aug; 22(8):1733-42. PubMed ID: 12924574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook.
    Singh AK; Bilal M; Iqbal HMN; Raj A
    Sci Total Environ; 2021 May; 770():144561. PubMed ID: 33736422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model.
    Poole CF; Ariyasena TC; Lenca N
    J Chromatogr A; 2013 Nov; 1317():85-104. PubMed ID: 23768535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products.
    Sangion A; Gramatica P
    SAR QSAR Environ Res; 2016 Oct; 27(10):781-798. PubMed ID: 27775436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the international workshops on quantitative structure-activity relationships (QSARs) in environmental toxicology.
    Kaiser KL
    SAR QSAR Environ Res; 2007; 18(1-2):3-20. PubMed ID: 17365955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.
    Önlü S; Saçan MT
    Environ Toxicol Chem; 2017 Apr; 36(4):1012-1019. PubMed ID: 27617782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR prediction of the competitive interaction of emerging halogenated pollutants with human transthyretin.
    Papa E; Kovarich S; Gramatica P
    SAR QSAR Environ Res; 2013; 24(4):333-49. PubMed ID: 23710908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding quantitative structure-property relationships uncertainty in environmental fate modeling.
    Sarfraz Iqbal M; Golsteijn L; Öberg T; Sahlin U; Papa E; Kovarich S; Huijbregts MA
    Environ Toxicol Chem; 2013 Apr; 32(5):1069-76. PubMed ID: 23436749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines for developing and using quantitative structure-activity relationships.
    Walker JD; Jaworska J; Comber MH; Schultz TW; Dearden JC
    Environ Toxicol Chem; 2003 Aug; 22(8):1653-65. PubMed ID: 12924568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring QSARs with Extended Topochemical Atom (ETA) indices for modeling chemical and drug toxicity.
    Roy K; Ghosh G
    Curr Pharm Des; 2010; 16(24):2625-39. PubMed ID: 20642426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.