These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28262953)

  • 21. Mitochondrial proteases in human diseases.
    Gomez-Fabra Gala M; Vögtle FN
    FEBS Lett; 2021 Apr; 595(8):1205-1222. PubMed ID: 33453058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiplex substrate profiling by mass spectrometry for proteases.
    Rohweder PJ; Jiang Z; Hurysz BM; O'Donoghue AJ; Craik CS
    Methods Enzymol; 2023; 682():375-411. PubMed ID: 36948708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studying proteases and protein turnover in Arabidopsis chloroplasts.
    Sjögren LL; Clarke AK
    Methods Mol Biol; 2011; 774():225-40. PubMed ID: 21822843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.
    Song J; Wang Y; Li F; Akutsu T; Rawlings ND; Webb GI; Chou KC
    Brief Bioinform; 2019 Mar; 20(2):638-658. PubMed ID: 29897410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery.
    Vizovišek M; Vidmar R; Drag M; Fonović M; Salvesen GS; Turk B
    Trends Biochem Sci; 2018 Oct; 43(10):829-844. PubMed ID: 30097385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural substrates of plant proteases: how can protease degradomics extend our knowledge?
    Tsiatsiani L; Gevaert K; Van Breusegem F
    Physiol Plant; 2012 May; 145(1):28-40. PubMed ID: 22008056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging and quantifying the dynamics of tumor-associated proteolysis.
    Sameni M; Cavallo-Medved D; Dosescu J; Jedeszko C; Moin K; Mullins SR; Olive MB; Rudy D; Sloane BF
    Clin Exp Metastasis; 2009; 26(4):299-309. PubMed ID: 19082919
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cloak, dagger, and shield: proteases in plant-pathogen interactions.
    Hou S; Jamieson P; He P
    Biochem J; 2018 Aug; 475(15):2491-2509. PubMed ID: 30115747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein TAILS: when termini tell tales of proteolysis and function.
    Lange PF; Overall CM
    Curr Opin Chem Biol; 2013 Feb; 17(1):73-82. PubMed ID: 23298954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Senescence-associated proteases in plants.
    Roberts IN; Caputo C; Criado MV; Funk C
    Physiol Plant; 2012 May; 145(1):130-9. PubMed ID: 22242903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protease Substrate Identification Using N-terminomics.
    Luo SY; Araya LE; Julien O
    ACS Chem Biol; 2019 Nov; 14(11):2361-2371. PubMed ID: 31368682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Next-Generation Trapping of Protease Substrates by Label-Free Proteomics.
    Lindemann C; Thomanek N; Kuhlmann K; Meyer HE; Marcus K; Narberhaus F
    Methods Mol Biol; 2018; 1841():189-206. PubMed ID: 30259488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast.
    Goulet C; Khalf M; Sainsbury F; D'Aoust MA; Michaud D
    Plant Biotechnol J; 2012 Jan; 10(1):83-94. PubMed ID: 21895943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protease-Inhibitor Interaction Predictions: Lessons on the Complexity of Protein-Protein Interactions.
    Fortelny N; Butler GS; Overall CM; Pavlidis P
    Mol Cell Proteomics; 2017 Jun; 16(6):1038-1051. PubMed ID: 28385878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases.
    Mann KS; Sanfaçon H
    Viruses; 2019 Jan; 11(1):. PubMed ID: 30650571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ demonstration and characteristic analysis of the protease components from marine bacteria using substrate immersing zymography.
    Liu D; Yang X; Huang J; Wu R; Wu C; He H; Li H
    Appl Biochem Biotechnol; 2015 Jan; 175(1):489-501. PubMed ID: 25315385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profiling the Extended Cleavage Specificity of the House Dust Mite Protease Allergens Der p 1, Der p 3 and Der p 6 for the Prediction of New Cell Surface Protein Substrates.
    Jacquet A; Campisi V; Szpakowska M; Dumez ME; Galleni M; Chevigné A
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28654001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance.
    Kohli A; Narciso JO; Miro B; Raorane M
    Physiol Plant; 2012 May; 145(1):165-79. PubMed ID: 22242864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delineating protease functions during cancer development.
    Affara NI; Andreu P; Coussens LM
    Methods Mol Biol; 2009; 539():1-32. PubMed ID: 19377975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Disentanglement of protease substrate repertoires.
    Van Damme P; Vandekerckhove J; Gevaert K
    Biol Chem; 2008 Apr; 389(4):371-81. PubMed ID: 18208357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.