These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28262991)

  • 1. Compromise and Synergy in High-Efficiency Thermoelectric Materials.
    Zhu T; Liu Y; Fu C; Heremans JP; Snyder JG; Zhao X
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28262991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems.
    Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Thermal Conductivity and Optimized Thermoelectric Properties of p-Type Te-Sb
    An D; Chen S; Lu Z; Li R; Chen W; Fan W; Wang W; Wu Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27788-27797. PubMed ID: 31287652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling interrelated parameters for designing high performance thermoelectric materials.
    Xiao C; Li Z; Li K; Huang P; Xie Y
    Acc Chem Res; 2014 Apr; 47(4):1287-95. PubMed ID: 24517646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics.
    Zhou Y; Gong X; Xu B; Hu M
    Nanoscale; 2017 Jul; 9(28):9987-9996. PubMed ID: 28681894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rationally Designing High-Performance Bulk Thermoelectric Materials.
    Tan G; Zhao LD; Kanatzidis MG
    Chem Rev; 2016 Oct; 116(19):12123-12149. PubMed ID: 27580481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Thermoelectric Performance in Ge
    Xie L; Liu R; Zhu C; Bu Z; Qiu W; Liu J; Xu F; Pei Y; Bai S; Chen L
    Small; 2021 Jun; 17(25):e2100915. PubMed ID: 34032385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel optimization perspectives for thermoelectric properties based on Rashba spin splitting: a mini review.
    Tian Q; Zhang W; Qin Z; Qin G
    Nanoscale; 2021 Nov; 13(43):18032-18043. PubMed ID: 34586120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence of electronic bands for high performance bulk thermoelectrics.
    Pei Y; Shi X; LaLonde A; Wang H; Chen L; Snyder GJ
    Nature; 2011 May; 473(7345):66-9. PubMed ID: 21544143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Transport and Thermoelectric Properties of SnSe-SnTe Solid Solution.
    Cho JY; Siyar M; Jin WC; Hwang E; Bae SH; Hong SH; Kim M; Park C
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31766632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence.
    Chen Z; Jian Z; Li W; Chang Y; Ge B; Hanus R; Yang J; Chen Y; Huang M; Snyder GJ; Pei Y
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te.
    Ma J; Meng F; He J; Jia Y; Li W
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43901-43910. PubMed ID: 32870654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Lin H; Tan G; Shen JN; Hao S; Wu LM; Calta N; Malliakas C; Wang S; Uher C; Wolverton C; Kanatzidis MG
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11431-6. PubMed ID: 27513458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Thermoelectric Performance of Polycrystalline SnSe by Decoupling Electrical and Thermal Transport through Carbon Fiber Incorporation.
    Yang G; Sang L; Li M; Kazi Nazrul Islam SM; Yue Z; Liu L; Li J; Mitchell DRG; Ye N; Wang X
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12910-12918. PubMed ID: 32101408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Principles and Nanostructuring Methods for Enhanced Thermoelectrics.
    Mori T
    Small; 2017 Dec; 13(45):. PubMed ID: 28961360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies to Improve the Thermoelectric Figure of Merit in Thermoelectric Functional Materials.
    Sun Y; Liu Y; Li R; Li Y; Bai S
    Front Chem; 2022; 10():865281. PubMed ID: 35665061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.