BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 28263431)

  • 1. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed FH
    J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilayer cellular stacks of gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering.
    Salifu AA; Lekakou C; Labeed F
    J Biomed Mater Res A; 2017 Mar; 105(3):779-789. PubMed ID: 27784129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts.
    Gupta D; Venugopal J; Mitra S; Giri Dev VR; Ramakrishna S
    Biomaterials; 2009 Apr; 30(11):2085-94. PubMed ID: 19167752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite.
    Jaiswal AK; Chhabra H; Soni VP; Bellare JR
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering.
    Niu X; Qin M; Xu M; Zhao L; Wei Y; Hu Y; Lian X; Chen S; Chen W; Huang D
    Biomed Mater; 2021 Feb; 16(2):025014. PubMed ID: 33361571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds.
    Mooyen S; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Suntornsaratoon P; Krishnamra N; Tang IM; Pon-On W
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1758-1766. PubMed ID: 27184456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering.
    Tian L; Prabhakaran MP; Ding X; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineralized Polyamide66/Calcium Chloride Nanofibers for Bone Tissue Engineering.
    Niu X; Zhao L; Yin M; Huang D; Wang N; Wei Y; Hu Y; Lian X; Chen W
    Tissue Eng Part C Methods; 2020 Jul; 26(7):352-363. PubMed ID: 32458747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering.
    Frohbergh ME; Katsman A; Botta GP; Lazarovici P; Schauer CL; Wegst UG; Lelkes PI
    Biomaterials; 2012 Dec; 33(36):9167-78. PubMed ID: 23022346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold.
    Sattary M; Rafienia M; Khorasani MT; Salehi H
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):933-950. PubMed ID: 30199600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering.
    Marins NH; Lee BEJ; E Silva RM; Raghavan A; Villarreal Carreño NL; Grandfield K
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110386. PubMed ID: 31369954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering.
    Azami M; Samadikuchaksaraei A; Poursamar SA
    Int J Artif Organs; 2010 Feb; 33(2):86-95. PubMed ID: 20306435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration.
    Francis L; Venugopal J; Prabhakaran MP; Thavasi V; Marsano E; Ramakrishna S
    Acta Biomater; 2010 Oct; 6(10):4100-9. PubMed ID: 20466085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.