These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28263438)

  • 1. InterPred: A pipeline to identify and model protein-protein interactions.
    Mirabello C; Wallner B
    Proteins; 2017 Jun; 85(6):1159-1170. PubMed ID: 28263438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein-peptide interaction sites using distant protein complexes as structural templates.
    Johansson-Åkhe I; Mirabello C; Wallner B
    Sci Rep; 2019 Mar; 9(1):4267. PubMed ID: 30862810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences.
    Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA.
    Weng G; Wang E; Wang Z; Liu H; Zhu F; Li D; Hou T
    Nucleic Acids Res; 2019 Jul; 47(W1):W322-W330. PubMed ID: 31106357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary profiles improve protein-protein interaction prediction from sequence.
    Hamp T; Rost B
    Bioinformatics; 2015 Jun; 31(12):1945-50. PubMed ID: 25657331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest.
    You ZH; Chan KC; Hu P
    PLoS One; 2015; 10(5):e0125811. PubMed ID: 25946106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cascade Random Forests Algorithm for Predicting Protein-Protein Interaction Sites.
    Wei ZS; Yang JY; Shen HB; Yu DJ
    IEEE Trans Nanobioscience; 2015 Oct; 14(7):746-60. PubMed ID: 26441427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pyDock scoring for the new modeling challenges in docking: Protein-peptide, homo-multimers, and domain-domain interactions.
    Pallara C; Jiménez-García B; Romero M; Moal IH; Fernández-Recio J
    Proteins; 2017 Mar; 85(3):487-496. PubMed ID: 27701776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Protein-Protein Interactions by Evidence Combining Methods.
    Chang JW; Zhou YQ; Ul Qamar MT; Chen LL; Ding YD
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27879651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.
    Huang YA; You ZH; Chen X; Yan GY
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines.
    You ZH; Li J; Gao X; He Z; Zhu L; Lei YK; Ji Z
    Biomed Res Int; 2015; 2015():867516. PubMed ID: 26000305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A benchmark testing ground for integrating homology modeling and protein docking.
    Bohnuud T; Luo L; Wodak SJ; Bonvin AM; Weng Z; Vajda S; Schueler-Furman O; Kozakov D
    Proteins; 2017 Jan; 85(1):10-16. PubMed ID: 27172383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LSTM-PHV: prediction of human-virus protein-protein interactions by LSTM with word2vec.
    Tsukiyama S; Hasan MM; Fujii S; Kurata H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34160596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Protein-Protein Interactions from Amino Acid Sequences Based on Continuous and Discrete Wavelet Transform Features.
    Wang T; Li L; Huang YA; Zhang H; Ma Y; Zhou X
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29617272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.