These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28263554)

  • 1. Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces.
    Schneider M; Maurath J; Fischer SB; Weiß M; Willenbacher N; Koos E
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11095-11105. PubMed ID: 28263554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using an added liquid to suppress drying defects in hard particle coatings.
    Fischer SB; Koos E
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1231-1242. PubMed ID: 32950839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal scaling of polygonal desiccation crack patterns.
    Ma X; Lowensohn J; Burton JC
    Phys Rev E; 2019 Jan; 99(1-1):012802. PubMed ID: 30780299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Surface Wettability on Crack Dynamics and Morphology of Colloidal Films.
    Ghosh UU; Chakraborty M; Bhandari AB; Chakraborty S; DasGupta S
    Langmuir; 2015 Jun; 31(22):6001-10. PubMed ID: 25973978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avoiding "mud" cracks during drying of thin films from aqueous colloidal suspensions.
    Santanach Carreras E; Chabert F; Dunstan DE; Franks GV
    J Colloid Interface Sci; 2007 Sep; 313(1):160-8. PubMed ID: 17521665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of substrate constraint on crack pattern formation in thin films of colloidal polystyrene particles.
    Smith MI; Sharp JS
    Langmuir; 2011 Jul; 27(13):8009-17. PubMed ID: 21650173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive, printable pastes from capillary suspensions.
    Schneider M; Koos E; Willenbacher N
    Sci Rep; 2016 Aug; 6():31367. PubMed ID: 27506726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids.
    Bossler F; Koos E
    Langmuir; 2016 Feb; 32(6):1489-501. PubMed ID: 26807651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface roughness induced cracks of the deposition film from drying colloidal suspension.
    Liu T; Luo H; Ma J; Xie W; Wang Y; Jing G
    Eur Phys J E Soft Matter; 2016 Feb; 39(2):24. PubMed ID: 26920527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving cracks in drying colloidal films.
    Badar A; Tirumkudulu MS
    Soft Matter; 2022 Mar; 18(11):2252-2275. PubMed ID: 35244102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface wrinkling and cracking dynamics in the drying of colloidal droplets.
    Zhang Y; Qian Y; Liu Z; Li Z; Zang D
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):38. PubMed ID: 25260323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality in the buckling behavior of drying suspension drops.
    Bamboriya OP; Tirumkudulu MS
    Soft Matter; 2023 Apr; 19(14):2605-2611. PubMed ID: 36947449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cracking in films of titanium dioxide nanoparticles with varying interaction strength.
    Mailer AG; Clegg PS
    J Colloid Interface Sci; 2014 Mar; 417():317-24. PubMed ID: 24407693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of particle shape anisotropy on crack formation in drying of colloidal suspension.
    Dugyala VR; Lama H; Satapathy DK; Basavaraj MG
    Sci Rep; 2016 Aug; 6():30708. PubMed ID: 27477261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of cracking in drying colloidal sheets.
    Sengupta R; Tirumkudulu MS
    Soft Matter; 2016 Apr; 12(13):3149-55. PubMed ID: 26924546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of cracking in drying colloidal suspensions with chain-like particles.
    Niu Z; Zhao Y; Zhang Q; Zhao Z; Ge D; Zhou J; Xu Y
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38656445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cracking in drying latex films.
    Tirumkudulu MS; Russel WB
    Langmuir; 2005 May; 21(11):4938-48. PubMed ID: 15896034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Immiscible Secondary Fluid on Particle Dynamics and Coffee Ring Characteristics during Suspension Drying.
    Jung KI; Park BS; Lee SJ; Noh SM; Jung HW
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32759811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking intermolecular interactions and rheological behaviour in capillary suspensions.
    Jarray A; Feichtinger A; Scholten E
    J Colloid Interface Sci; 2022 Dec; 627():415-426. PubMed ID: 35863200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.