These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28263592)

  • 21. Graphene coatings: probing the limits of the one atom thick protection layer.
    Nilsson L; Andersen M; Balog R; Lægsgaard E; Hofmann P; Besenbacher F; Hammer B; Stensgaard I; Hornekær L
    ACS Nano; 2012 Nov; 6(11):10258-66. PubMed ID: 23106828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of gas environment and heating on atomic structures of platinum nanoparticle catalysts for proton-exchange membrane fuel cells.
    Yoshida K; Zhang X; Shimada Y; Nagai Y; Hiroyama T; Tanaka N; Lari L; Ward MR; Boyes ED; Gai PL
    Nanotechnology; 2019 Apr; 30(17):175701. PubMed ID: 30641503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage.
    Orita H; Inada Y
    J Phys Chem B; 2005 Dec; 109(47):22469-75. PubMed ID: 16853927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In situ oxidation study of Pt(110) and its interaction with CO.
    Butcher DR; Grass ME; Zeng Z; Aksoy F; Bluhm H; Li WX; Mun BS; Somorjai GA; Liu Z
    J Am Chem Soc; 2011 Dec; 133(50):20319-25. PubMed ID: 22070406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-Principles Calculation of Pt Surface Energies in an Electrochemical Environment: Thermodynamic Driving Forces for Surface Faceting and Nanoparticle Reconstruction.
    McCrum IT; Hickner MA; Janik MJ
    Langmuir; 2017 Jul; 33(28):7043-7052. PubMed ID: 28640641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanofence Stabilized Platinum Nanoparticles Catalyst via Facet-Selective Atomic Layer Deposition.
    Cao K; Shi L; Gong M; Cai J; Liu X; Chu S; Lang Y; Shan B; Chen R
    Small; 2017 Aug; 13(32):. PubMed ID: 28656628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-Time Atomic-Scale Visualization of Reversible Copper Surface Activation during the CO Oxidation Reaction.
    Luo L; Nian Y; Wang S; Dong Z; He Y; Han Y; Wang C
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2505-2509. PubMed ID: 31816140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces.
    Chang TY; Tanaka Y; Ishikawa R; Toyoura K; Matsunaga K; Ikuhara Y; Shibata N
    Nano Lett; 2014 Jan; 14(1):134-8. PubMed ID: 24351061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface.
    Moses-DeBusk M; Yoon M; Allard LF; Mullins DR; Wu Z; Yang X; Veith G; Stocks GM; Narula CK
    J Am Chem Soc; 2013 Aug; 135(34):12634-45. PubMed ID: 23952672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions.
    Hejral U; Franz D; Volkov S; Francoual S; Strempfer J; Stierle A
    Phys Rev Lett; 2018 Mar; 120(12):126101. PubMed ID: 29694082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical design of platinum-sliver single atom alloy catalysts with CO adsorbate-induced surface structures.
    Hua M; Tian X; Li S; Shao A; Lin X
    Phys Chem Chem Phys; 2022 Aug; 24(32):19488-19501. PubMed ID: 35929486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy.
    Yoshida H; Omote H; Takeda S
    Nanoscale; 2014 Nov; 6(21):13113-8. PubMed ID: 25248870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support.
    G Verga L; Russell AE; Skylaris CK
    Phys Chem Chem Phys; 2018 Oct; 20(40):25918-25930. PubMed ID: 30289424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere.
    Liu L; Yu M; Hou B; Wang Q; Zhu B; Jia L; Li D
    Nanoscale; 2019 Apr; 11(16):8037-8046. PubMed ID: 30968086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
    Akita T; Kohyama M; Haruta M
    Acc Chem Res; 2013 Aug; 46(8):1773-82. PubMed ID: 23777292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reshaping of Metal Nanoparticles Under Reaction Conditions.
    Zhu B; Meng J; Yuan W; Zhang X; Yang H; Wang Y; Gao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2171-2180. PubMed ID: 31298462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Break-up of stepped platinum catalyst surfaces by high CO coverage.
    Tao F; Dag S; Wang LW; Liu Z; Butcher DR; Bluhm H; Salmeron M; Somorjai GA
    Science; 2010 Feb; 327(5967):850-3. PubMed ID: 20150498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.