These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28263592)

  • 41. Break-up of stepped platinum catalyst surfaces by high CO coverage.
    Tao F; Dag S; Wang LW; Liu Z; Butcher DR; Bluhm H; Salmeron M; Somorjai GA
    Science; 2010 Feb; 327(5967):850-3. PubMed ID: 20150498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cinchonidine adsorption on gold and gold-containing bimetallic platinum metal surfaces: an attenuated total reflection infrared and density functional theory study.
    Behzadi B; Vargas A; Ferri D; Ernst KH; Baiker A
    J Phys Chem B; 2006 Aug; 110(34):17082-9. PubMed ID: 16928003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface science investigations of oxidative chemistry on gold.
    Gong J; Mullins CB
    Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis.
    Pal J; Pal T
    Nanoscale; 2015 Sep; 7(34):14159-90. PubMed ID: 26255749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced Carbon Monoxide Saturation Coverage on Vicinal Palladium Surfaces: the Importance of the Adsorption Site.
    Garcia-Martinez F; Dietze E; Schiller F; Gajdek D; Merte LR; Gericke SM; Zetterberg J; Albertin S; Lundgren E; Grönbeck H; Ortega JE
    J Phys Chem Lett; 2021 Oct; 12(39):9508-9515. PubMed ID: 34559547
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts.
    Horwath JP; Lehman-Chong C; Vojvodic A; Stach EA
    ACS Nano; 2023 May; 17(9):8098-8107. PubMed ID: 37084280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Atomic-Scale View of CO and H2 Oxidation on a Pt/Fe3 O4 Model Catalyst.
    Bliem R; van der Hoeven J; Zavodny A; Gamba O; Pavelec J; de Jongh PE; Schmid M; Diebold U; Parkinson GS
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):13999-4002. PubMed ID: 26356798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Effect of Dispersion Correction on the Adsorption of CO on Metallic Nanoparticles.
    Davis JB; Baletto F; Johnston RL
    J Phys Chem A; 2015 Sep; 119(37):9703-9. PubMed ID: 26320360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct Visualisation of the Surface Atomic Active Sites of Carbon-Supported Co
    Makgae OA; Moya AN; Phaahlamohlaka TN; Huang C; Coville NJ; Kirkland AI; Liberti E
    Chemphyschem; 2022 Aug; 23(15):e202200031. PubMed ID: 35476226
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of H
    Ungerer MJ; Santos-Carballal D; Cadi-Essadek A; van Sittert CGCE; de Leeuw NH
    J Phys Chem C Nanomater Interfaces; 2019 Nov; 123(45):27465-27476. PubMed ID: 32064018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure, chemical composition, and reactivity correlations during the in situ oxidation of 2-propanol.
    Paredis K; Ono LK; Mostafa S; Li L; Zhang Z; Yang JC; Barrio L; Frenkel AI; Cuenya BR
    J Am Chem Soc; 2011 May; 133(17):6728-35. PubMed ID: 21469709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.