These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 28263609)
21. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507 [TBL] [Abstract][Full Text] [Related]
22. Effect of uremic state in intestine through a co-culture in vitro intestinal epithelial model. Garcia A; Macedo MH; Azevedo MJ; Pestana M; Sarmento B; Sampaio-Maia B Int J Pharm; 2020 Jun; 584():119450. PubMed ID: 32464229 [TBL] [Abstract][Full Text] [Related]
23. Adipocytes as lipid sensors of oleic acid transport through a functional Caco-2/HT29-MTX intestinal barrier. Berger E; Géloën A Adipocyte; 2019 Dec; 8(1):83-97. PubMed ID: 30905315 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium. Birch D; Diedrichsen RG; Christophersen PC; Mu H; Nielsen HM Eur J Pharm Sci; 2018 Jun; 118():144-153. PubMed ID: 29524592 [TBL] [Abstract][Full Text] [Related]
25. The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. Thwala LN; Beloqui A; Csaba NS; González-Touceda D; Tovar S; Dieguez C; Alonso MJ; Préat V J Control Release; 2016 Dec; 243():109-120. PubMed ID: 27720993 [TBL] [Abstract][Full Text] [Related]
26. Role of enteric glial cells in the toxicity of phycotoxins: Investigation with a tri-culture intestinal cell model. Reale O; Bodi D; Huguet A; Fessard V Toxicol Lett; 2021 Oct; 351():89-98. PubMed ID: 34461197 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. Gagnon M; Zihler Berner A; Chervet N; Chassard C; Lacroix C J Microbiol Methods; 2013 Sep; 94(3):274-9. PubMed ID: 23835135 [TBL] [Abstract][Full Text] [Related]
28. Oleic Acid Uptake Reveals the Rescued Enterocyte Phenotype of Colon Cancer Caco-2 by HT29-MTX Cells in Co-Culture Mode. Berger E; Nassra M; Atgié C; Plaisancié P; Géloën A Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28726765 [TBL] [Abstract][Full Text] [Related]
29. In vitro study of intestinal transport of inorganic and methylated arsenic species by Caco-2/HT29-MTX cocultures. Calatayud M; Vázquez M; Devesa V; Vélez D Chem Res Toxicol; 2012 Dec; 25(12):2654-62. PubMed ID: 23116229 [TBL] [Abstract][Full Text] [Related]
30. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. Lozoya-Agullo I; González-Álvarez I; González-Álvarez M; Merino-Sanjuán M; Bermejo M J Pharm Sci; 2015 Sep; 104(9):3136-45. PubMed ID: 25891783 [TBL] [Abstract][Full Text] [Related]
31. Optimization of Caco-2 and HT29 co-culture in vitro cell models for permeability studies. Pan F; Han L; Zhang Y; Yu Y; Liu J Int J Food Sci Nutr; 2015; 66(6):680-5. PubMed ID: 26299896 [TBL] [Abstract][Full Text] [Related]
32. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Li N; Wang D; Sui Z; Qi X; Ji L; Wang X; Yang L Tissue Eng Part C Methods; 2013 Sep; 19(9):708-19. PubMed ID: 23350801 [TBL] [Abstract][Full Text] [Related]
33. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Akbari A; Lavasanifar A; Wu J Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304 [TBL] [Abstract][Full Text] [Related]
34. Enhancing the Furosemide Permeability by Papain Minitablets Through a Triple Co-culture In Vitro Intestinal Cell Model. Corazza FG; Ernesto JV; Nambu FAN; Calixto LA; Varca GHC; Vieira DP; Leite-Silva VR; Andréo-Filho N; Lopes PS AAPS PharmSciTech; 2020 Sep; 21(7):255. PubMed ID: 32888072 [TBL] [Abstract][Full Text] [Related]
35. In vitro evaluation of intestinal fluoride absorption using different cell models. Rocha RA; Vélez D; Devesa V Toxicol Lett; 2012 May; 210(3):311-7. PubMed ID: 22387159 [TBL] [Abstract][Full Text] [Related]
36. The Caco-2 Model: Modifications and enhancements to improve efficiency and predictive performance. Panse N; Gerk PM Int J Pharm; 2022 Aug; 624():122004. PubMed ID: 35820514 [TBL] [Abstract][Full Text] [Related]
37. Towards the Standardization of Intestinal In Vitro Advanced Barrier Model for Nanoparticles Uptake and Crossing: The SiO Vincentini O; Prota V; Cecchetti S; Bertuccini L; Tinari A; Iosi F; De Angelis I Cells; 2022 Oct; 11(21):. PubMed ID: 36359753 [TBL] [Abstract][Full Text] [Related]
38. Glutathione-enriched baker's yeast: production, bioaccessibility and intestinal transport assays. Musatti A; Devesa V; Calatayud M; Vélez D; Manzoni M; Rollini M J Appl Microbiol; 2014 Feb; 116(2):304-13. PubMed ID: 24119023 [TBL] [Abstract][Full Text] [Related]
39. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro. Kasper JY; Hermanns MI; Cavelius C; Kraegeloh A; Jung T; Danzebrink R; Unger RE; Kirkpatrick CJ Int J Nanomedicine; 2016; 11():6353-6364. PubMed ID: 27994454 [TBL] [Abstract][Full Text] [Related]
40. Screening of Cytotoxic B. cereus on Differentiated Caco-2 Cells and in Co-Culture with Mucus-Secreting (HT29-MTX) Cells. Castiaux V; Laloux L; Schneider YJ; Mahillon J Toxins (Basel); 2016 Nov; 8(11):. PubMed ID: 27827957 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]