These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 28263938)

  • 1. Analysis of Machine Learning Techniques for Heart Failure Readmissions.
    Mortazavi BJ; Downing NS; Bucholz EM; Dharmarajan K; Manhapra A; Li SX; Negahban SN; Krumholz HM
    Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):629-640. PubMed ID: 28263938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.
    Zhu K; Lou Z; Zhou J; Ballester N; Kong N; Parikh P
    Methods Inf Med; 2015; 54(6):560-7. PubMed ID: 26548400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.
    Golas SB; Shibahara T; Agboola S; Otaki H; Sato J; Nakae T; Hisamitsu T; Kojima G; Felsted J; Kakarmath S; Kvedar J; Jethwani K
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):44. PubMed ID: 29929496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hospital wide predictive model for unplanned readmission using hierarchical ICD data.
    Deschepper M; Eeckloo K; Vogelaers D; Waegeman W
    Comput Methods Programs Biomed; 2019 May; 173():177-183. PubMed ID: 30777619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients.
    Polo Friz H; Esposito V; Marano G; Primitz L; Bovio A; Delgrossi G; Bombelli M; Grignaffini G; Monza G; Boracchi P
    Intern Emerg Med; 2022 Sep; 17(6):1727-1737. PubMed ID: 35661313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach.
    Xue Y; Liang H; Norbury J; Gillis R; Killingworth B
    J Biomed Inform; 2018 Oct; 86():143-148. PubMed ID: 30237014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning vs. conventional methods for prediction of 30-day readmission following percutaneous mitral edge-to-edge repair.
    Sulaiman S; Kawsara A; El Sabbagh A; Mahayni AA; Gulati R; Rihal CS; Alkhouli M
    Cardiovasc Revasc Med; 2023 Nov; 56():18-24. PubMed ID: 37248108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data.
    Gupta S; Ko DT; Azizi P; Bouadjenek MR; Koh M; Chong A; Austin PC; Sanner S
    Can J Cardiol; 2020 Jun; 36(6):878-885. PubMed ID: 32204950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of machine learning and conventional statistical modeling for predicting readmission following acute heart failure hospitalization.
    Abdul-Samad K; Ma S; Austin DE; Chong A; Wang CX; Wang X; Austin PC; Ross HJ; Wang B; Lee DS
    Am Heart J; 2024 Nov; 277():93-103. PubMed ID: 39094840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Predictability of Readmissions and Death Using Machine Learning in Cirrhosis.
    Hu C; Anjur V; Saboo K; Reddy KR; O'Leary J; Tandon P; Wong F; Garcia-Tsao G; Kamath PS; Lai JC; Biggins SW; Fallon MB; Thuluvath P; Subramanian RM; Maliakkal B; Vargas H; Thacker LR; Iyer RK; Bajaj JS
    Am J Gastroenterol; 2021 Feb; 116(2):336-346. PubMed ID: 33038139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality.
    Shin S; Austin PC; Ross HJ; Abdel-Qadir H; Freitas C; Tomlinson G; Chicco D; Mahendiran M; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS
    ESC Heart Fail; 2021 Feb; 8(1):106-115. PubMed ID: 33205591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Based Prediction Models for 30-Day Readmission after Hospitalization for Chronic Obstructive Pulmonary Disease.
    Goto T; Jo T; Matsui H; Fushimi K; Hayashi H; Yasunaga H
    COPD; 2019 Dec; 16(5-6):338-343. PubMed ID: 31709851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictors of 30-Day Unplanned Readmission After Carotid Artery Stenting Using Artificial Intelligence.
    Amritphale A; Chatterjee R; Chatterjee S; Amritphale N; Rahnavard A; Awan GM; Omar B; Fonarow GC
    Adv Ther; 2021 Jun; 38(6):2954-2972. PubMed ID: 33834355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of machine learning techniques to predict unplanned readmission following total shoulder arthroplasty.
    Arvind V; London DA; Cirino C; Keswani A; Cagle PJ
    J Shoulder Elbow Surg; 2021 Feb; 30(2):e50-e59. PubMed ID: 32868011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study.
    Soliman A; Agvall B; Etminani K; Hamed O; Lingman M
    J Med Internet Res; 2023 Oct; 25():e46934. PubMed ID: 37889530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do Acute Myocardial Infarction and Heart Failure Readmissions Flagged as Potentially Preventable by the 3M Potentially Preventable Readmissions Software Have More Process-of-Care Problems?
    Borzecki AM; Chen Q; Mull HJ; Shwartz M; Bhatt DL; Hanchate A; Rosen AK
    Circ Cardiovasc Qual Outcomes; 2016 Sep; 9(5):532-41. PubMed ID: 27601460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach.
    Sharma V; Kulkarni V; McAlister F; Eurich D; Keshwani S; Simpson SH; Voaklander D; Samanani S
    J Card Fail; 2022 May; 28(5):710-722. PubMed ID: 34936894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms.
    Lo YT; Liao JC; Chen MH; Chang CM; Li CT
    BMC Med Inform Decis Mak; 2021 Oct; 21(1):288. PubMed ID: 34670553
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 29.