These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 28263940)

  • 1. Early Detection of Heart Failure Using Electronic Health Records: Practical Implications for Time Before Diagnosis, Data Diversity, Data Quantity, and Data Density.
    Ng K; Steinhubl SR; deFilippi C; Dey S; Stewart WF
    Circ Cardiovasc Qual Outcomes; 2016 Nov; 9(6):649-658. PubMed ID: 28263940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent Neural Networks for Early Detection of Heart Failure From Longitudinal Electronic Health Record Data: Implications for Temporal Modeling With Respect to Time Before Diagnosis, Data Density, Data Quantity, and Data Type.
    Chen R; Stewart WF; Sun J; Ng K; Yan X
    Circ Cardiovasc Qual Outcomes; 2019 Oct; 12(10):e005114. PubMed ID: 31610714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study.
    Lin H; Long E; Ding X; Diao H; Chen Z; Liu R; Huang J; Cai J; Xu S; Zhang X; Wang D; Chen K; Yu T; Wu D; Zhao X; Liu Z; Wu X; Jiang Y; Yang X; Cui D; Liu W; Zheng Y; Luo L; Wang H; Chan CC; Morgan IG; He M; Liu Y
    PLoS Med; 2018 Nov; 15(11):e1002674. PubMed ID: 30399150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using recurrent neural network models for early detection of heart failure onset.
    Choi E; Schuetz A; Stewart WF; Sun J
    J Am Med Inform Assoc; 2017 Mar; 24(2):361-370. PubMed ID: 27521897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.
    Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K
    PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets: Optimization With Machine Learning.
    Samad MD; Ulloa A; Wehner GJ; Jing L; Hartzel D; Good CW; Williams BA; Haggerty CM; Fornwalt BK
    JACC Cardiovasc Imaging; 2019 Apr; 12(4):681-689. PubMed ID: 29909114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study.
    Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P
    Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records.
    Wang Y; Ng K; Byrd RJ; Hu J; Ebadollahi S; Daar Z; deFilippi C; Steinhubl SR; Stewart WF
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2530-3. PubMed ID: 26736807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.
    Golas SB; Shibahara T; Agboola S; Otaki H; Sato J; Nakae T; Hisamitsu T; Kojima G; Felsted J; Kakarmath S; Kvedar J; Jethwani K
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):44. PubMed ID: 29929496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing EHR-driven heart failure risk prediction models using CPXR(Log) with the probabilistic loss function.
    Taslimitehrani V; Dong G; Pereira NL; Panahiazar M; Pathak J
    J Biomed Inform; 2016 Apr; 60():260-9. PubMed ID: 26844760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using EHRs and Machine Learning for Heart Failure Survival Analysis.
    Panahiazar M; Taslimitehrani V; Pereira N; Pathak J
    Stud Health Technol Inform; 2015; 216():40-4. PubMed ID: 26262006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using EHRs for Heart Failure Therapy Recommendation Using Multidimensional Patient Similarity Analytics.
    Panahiazar M; Taslimitehrani V; Pereira NL; Pathak J
    Stud Health Technol Inform; 2015; 210():369-73. PubMed ID: 25991168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PREDICTIVE MODELING OF HOSPITAL READMISSION RATES USING ELECTRONIC MEDICAL RECORD-WIDE MACHINE LEARNING: A CASE-STUDY USING MOUNT SINAI HEART FAILURE COHORT.
    Shameer K; Johnson KW; Yahi A; Miotto R; Li LI; Ricks D; Jebakaran J; Kovatch P; Sengupta PP; Gelijns S; Moskovitz A; Darrow B; David DL; Kasarskis A; Tatonetti NP; Pinney S; Dudley JT
    Pac Symp Biocomput; 2017; 22():276-287. PubMed ID: 27896982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing 30-Day Readmission Rate for Heart Failure Using Different Predictive Models.
    Mahajan S; Burman P; Hogarth M
    Stud Health Technol Inform; 2016; 225():143-7. PubMed ID: 27332179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Driven Models to Predict Prognostic Outcomes in Patients Hospitalized With Heart Failure Using Electronic Health Records: Retrospective Study.
    Lv H; Yang X; Wang B; Wang S; Du X; Tan Q; Hao Z; Liu Y; Yan J; Xia Y
    J Med Internet Res; 2021 Apr; 23(4):e24996. PubMed ID: 33871375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated data extraction and ensemble methods for predictive modeling of breast cancer outcomes after radiation therapy.
    Lindsay WD; Ahern CA; Tobias JS; Berlind CG; Chinniah C; Gabriel PE; Gee JC; Simone CB
    Med Phys; 2019 Feb; 46(2):1054-1063. PubMed ID: 30499597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying undetected dementia in UK primary care patients: a retrospective case-control study comparing machine-learning and standard epidemiological approaches.
    Ford E; Rooney P; Oliver S; Hoile R; Hurley P; Banerjee S; van Marwijk H; Cassell J
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):248. PubMed ID: 31791325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record.
    Vijayakrishnan R; Steinhubl SR; Ng K; Sun J; Byrd RJ; Daar Z; Williams BA; deFilippi C; Ebadollahi S; Stewart WF
    J Card Fail; 2014 Jul; 20(7):459-64. PubMed ID: 24709663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse Engineering and Evaluation of Prediction Models for Progression to Type 2 Diabetes: An Application of Machine Learning Using Electronic Health Records.
    Anderson JP; Parikh JR; Shenfeld DK; Ivanov V; Marks C; Church BW; Laramie JM; Mardekian J; Piper BA; Willke RJ; Rublee DA
    J Diabetes Sci Technol; 2015 Dec; 10(1):6-18. PubMed ID: 26685993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.